Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents
Abstract
:1. Introduction
2. Preliminaries
- The collection of all vectors is a total subset of ; its closed linear span is equal to ;
- for . If is a tensor product of and , it is common to write instead of and in place of . A tensor product of with is a Hilbert space and a mapping of goes into such that
Variable Exponent Spaces
- iff ;
- , if ;
- for any .
3. The Main Results
Some Needed Technical Identities for the Riemann–Liouville Fractional Integral Operators
- For any , we have
- For any , we have
4. Fractional Newton–Milne-Type Inequalities for Differentiable Convex Mappings
5. Fractional Hermite–Hadamard Inequality Involving Arithmetic–Geometric Mean-Type Convexity
6. Some Examples and Consequences
7. Hermite–Hadamard Inequality in Mixed-Norm Morrey Spaces with Variable Exponent
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atangana, A.; Bildik, N. The Use of Fractional Order Derivative to Predict the Groundwater Flow. Math. Probl. Eng. 2013, 2013, 543026. [Google Scholar] [CrossRef]
- Chen, C.; Han, D.; Chang, C.-C. MPCCT: Multimodal Vision-Language Learning Paradigm with Context-Based Compact Transformer. Pattern Recognit. 2024, 147, 110084. [Google Scholar] [CrossRef]
- Shi, S.; Han, D.; Cui, M. A Multimodal Hybrid Parallel Network Intrusion Detection Model. Connect. Sci. 2023, 35, 2227780. [Google Scholar] [CrossRef]
- Han, D.; Zhou, H.; Weng, T.-H.; Wu, Z.; Han, B.; Li, K.-C.; Pathan, A.-S.K. LMCA: A Lightweight Anomaly Network Traffic Detection Model Integrating Adjusted Mobilenet and Coordinate Attention Mechanism for IoT. Telecommun. Syst. 2023, 84, 549–564. [Google Scholar] [CrossRef]
- Wang, H.; Han, D.; Cui, M.; Chen, C. NAS-YOLOX: A SAR Ship Detection Using Neural Architecture Search and Multi-Scale Attention. Connect. Sci. 2023, 35, 1–32. [Google Scholar] [CrossRef]
- Dou, J.; Liu, J.; Wang, Y.; Zhi, L.; Shen, J.; Wang, G. Surface Activity, Wetting, and Aggregation of a Perfluoropolyether Quaternary Ammonium Salt Surfactant with a Hydroxyethyl Group. Molecules 2023, 28, 7151. [Google Scholar] [CrossRef]
- Fei, R.; Guo, Y.; Li, J.; Hu, B.; Yang, L. An Improved BPNN Method Based on Probability Density for Indoor Location. IEICE Trans. Inf. Syst. 2023, E106.D, 773–785. [Google Scholar] [CrossRef]
- Zhang, G.; Li, W.; Yu, M.; Huang, H.; Wang, Y.; Han, Z.; Shi, K.; Ma, L.; Yu, Z.; Zhu, X.; et al. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. Adv. Sci. 2023, 10, 2206264. [Google Scholar] [CrossRef]
- Liao, L.; Guo, Z.; Gao, Q.; Wang, Y.; Yu, F.; Zhao, Q.; Maybank, S.J.; Liu, Z.; Li, C.; Li, L. Color Image Recovery Using Generalized Matrix Completion over Higher-Order Finite Dimensional Algebra. Axioms 2023, 12, 954. [Google Scholar] [CrossRef]
- He, X.; Xiong, Z.; Lei, C.; Shen, Z.; Ni, A.; Xie, Y.; Liu, C. Excellent Microwave Absorption Performance of LaFeO3/Fe3O4/C Perovskite Composites with Optimized Structure and Impedance Matching. Carbon 2023, 213, 118200. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Jiang, Y.; Cao, Y.; Wang, Z.; Li, J.; Yan, C.; Wang, D.; Yuan, L.; Zhao, G. Release Pattern of Light Aromatic Hydrocarbons during the Biomass Roasting Process. Molecules 2024, 29, 1188. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, Y.; Zhu, Z.; Zhan, Y.; Li, Y.; Li, K.; Wang, P.; Zhong, F.; Feng, W.; Yang, X. Rational Design of High-performance Epoxy/Expandable Microsphere Foam with Outstanding Mechanical, Thermal, and Dielectric Properties. J. Appl. Polym. Sci. 2024, 141, e55502. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, A.; Zheng, Y.; Mazhar, S.; Chang, Y. A Detection Method with Antiinterference for Infrared Maritime Small Target. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3999–4014. [Google Scholar] [CrossRef]
- Lu, K. Online Distributed Algorithms for Online Noncooperative Games with Stochastic Cost Functions: High Probability Bound of Regrets. IEEE Trans. Autom. Contr. 2024, 66, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Lu, T.; Yi, X.; An, M.; Hao, R. Energy Systems Capacity Planning under High Renewable Penetration Considering Concentrating Solar Power. Sustain. Energy Technol. Assess. 2024, 64, 103671. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal Formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Adamczak, R.; Wolff, P. Concentration Inequalities for Non-Lipschitz Functions with Bounded Derivatives of Higher Order. Probab. Theory Relat. Fields 2015, 162, 531–586. [Google Scholar] [CrossRef]
- Bugajewski, D.; Gulgowski, J.; Kasprzak, P. On Continuity and Compactness of Some Nonlinear Operators in the Spaces of Functions of Bounded Variation. Ann. Mat. 2016, 195, 1513–1530. [Google Scholar] [CrossRef]
- Miranda, M. Functions of Bounded Variation on “Good” Metric Spaces. J. Math. Pures Appl. 2003, 82, 975–1004. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On Generalized Fractional Integral Inequalities for Twice Differentiable Convex Functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Ahmadini, A.A.H.; Afzal, W.; Abbas, M.; Aly, E.S. Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1, h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems. Mathematics 2024, 12, 382. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Hamali, W.; Mahnashi, A.M.; Sen, M.D.l. Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions. Fractal Fract. 2023, 7, 687. [Google Scholar] [CrossRef]
- Afzal, W.; Aloraini, N.M.; Abbas, M.; Ro, J.-S.; Zaagan, A.A. Hermite-Hadamard, Fejér and Trapezoid Type Inequalities Using Godunova-Levin Preinvex Functions via Bhunia’s Order and with Applications to Quadrature Formula and Random Variable. Math. Biosci. Eng. 2024, 21, 3422–3447. [Google Scholar] [CrossRef] [PubMed]
- Afzal, W.; Shabbir, K.; Treanţă, S.; Nonlaopon, K.; Afzal, W.; Shabbir, K.; Treanţă, S.; Nonlaopon, K. Jensen and Hermite-Hadamard Type Inclusions for Harmonical h-Godunova-Levin Functions. AIMS Math. 2023, 8, 3303–3321. [Google Scholar] [CrossRef]
- Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Khan, A.G.; Cesarano, C.; Noor, M.A. Exploration of Quantum Milne–Mercer-Type Inequalities with Applications. Symmetry 2023, 15, 1096. [Google Scholar] [CrossRef]
- Desta, H.D.; Budak, H.; Kara, H. New Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functions. Univers. J. Math. Appl. 2024, 7, 30–37. [Google Scholar] [CrossRef]
- Bosch, P.; Rodríguez, J.M.; Sigarreta, J.M. On New Milne-Type Inequalities and Applications. J. Inequal. Appl. 2023, 2023, 3. [Google Scholar] [CrossRef]
- Budak, H.; Kösem, P.; Kara, H. On New Milne-Type Inequalities for Fractional Integrals. J. Inequal. Appl. 2023, 2023, 10. [Google Scholar] [CrossRef]
- Weimar, M. The Complexity of Linear Tensor Product Problems in (Anti)Symmetric Hilbert Spaces. J. Approx. Theory 2012, 164, 1345–1368. [Google Scholar] [CrossRef]
- Lewintan, P.; Müller, S.; Neff, P. Korn Inequalities for Incompatible Tensor Fields in Three Space Dimensions with Conformally Invariant Dislocation Energy. Calc. Var. Partial Differ. Equ. 2021, 60, 150. [Google Scholar] [CrossRef]
- Dunn, J.C. Convexity, Monotonicity, and Gradient Processes in Hilbert Space. J. Math. Anal. Appl. 1976, 53, 145–158. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Bakherad, M. Chebyshev Type Inequalities for Hilbert Space Operators. J. Math. Anal. Appl. 2014, 420, 737–749. [Google Scholar] [CrossRef]
- Krnić, M.; Lovričević, N.; Pečarić, J. Multidimensional Jensen’s Operator on a Hilbert Space and Applications. Linear Algebra Appl. 2012, 436, 2583–2596. [Google Scholar] [CrossRef]
- Barbagallo, A.; Guarino Lo Bianco, S. On Ill-Posedness and Stability of Tensor Variational Inequalities: Application to an Economic Equilibrium. J. Glob. Optim. 2020, 77, 125–141. [Google Scholar] [CrossRef]
- Dragomir, S. Tensorial and Hadamard Product Inequalities for Synchronous Functions. Commun. Adv. Math. Sci. 2023, 6, 177–187. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, T. Introduction of Frame in Tensor Product of N-Hilbert Spaces. Sahand Commun. Math. Anal. 2021, 17, 16. [Google Scholar]
- Stojiljković, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some Refinements of the Tensorial Inequalities in Hilbert Spaces. Symmetry 2023, 15, 925. [Google Scholar] [CrossRef]
- Dragomir, S. Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Commun. Adv. Math. Sci. 2024, 7, 56–70. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Abramovich, S.; Barić, J.; Pečarić, J. A New Proof of an Inequality of Bohr for Hilbert Space Operators. Linear Algebra Appl. 2009, 430, 1432–1435. [Google Scholar] [CrossRef]
- Afzal, W.; Eldin, S.M.; Nazeer, W.; Galal, A.M.; Afzal, W.; Eldin, S.M.; Nazeer, W.; Galal, A.M. Some Integral Inequalities for Harmonical Cr-h-Godunova-Levin Stochastic Processes. AIMS Math. 2023, 8, 13473–13491. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. New Perspective of Log-Convex Functions. Appl. Math. Inf. Sci. 2020, 14, 847–854. [Google Scholar]
- Sezer, S.; Eken, Z.; Tınaztepe, G.; Adilov, G. P-Convex Functions and Some of Their Properties. Numer. Funct. Anal. Optim. 2021, 42, 443–459. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Weighted Hermite-Hadamard-Type Inequalities without Any Symmetry Condition on the Weight Function. Open Math. 2024, 22, 20230178. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Arshad, M.; Asamoah, J.K.K.; Galal, A.M. Some Novel Estimates of Integral Inequalities for a Generalized Class of Harmonical Convex Mappings by Means of Center-Radius Order Relation. J. Math. 2023, 2023, 8865992. [Google Scholar] [CrossRef]
- Du, T.; Li, Y.; Yang, Z. A Generalization of Simpson’s Inequality via Differentiable Mapping Using Extended (s,m)-Convex Functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- Almalki, Y.; Afzal, W. Some New Estimates of Hermite–Hadamard Inequalities for Harmonical Cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics 2023, 11, 4041. [Google Scholar] [CrossRef]
- Iftikhar, S.; Erden, S.; Kumam, P.; Awan, M.U. Local Fractional Newton’s Inequalities Involving Generalized Harmonic Convex Functions. Adv. Differ. Equ. 2020, 2020, 185. [Google Scholar] [CrossRef]
- Ihsan Butt, S.; Budak, H.; Nonlaopon, K. New Quantum Mercer Estimates of Simpson–Newton-like Inequalities via Convexity. Symmetry 2022, 14, 1935. [Google Scholar] [CrossRef]
- Afzal, W.; Breaz, D.; Abbas, M.; Cotîrlă, L.-I.; Khan, Z.A.; Rapeanu, E. Hyers–Ulam Stability of 2D-Convex Mappings and Some Related New Hermite–Hadamard, Pachpatte, and Fejér Type Integral Inequalities Using Novel Fractional Integral Operators via Totally Interval-Order Relations with Open Problem. Mathematics 2024, 12, 1238. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Akkurt, A.; Sarıkaya, M.Z.; Budak, H.; Yıldırım, H. On the Hadamard’s Type Inequalities for Co-Ordinated Convex Functions via Fractional Integrals. J. King Saud Univ.-Sci. 2017, 29, 380–387. [Google Scholar] [CrossRef]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, 3830324. [Google Scholar] [CrossRef]
- Agahi, H.; Babakhani, A. On Fractional Stochastic Inequalities Related to Hermite–Hadamard and Jensen Types for Convex Stochastic Processes. Aequ. Math. 2016, 90, 1035–1043. [Google Scholar] [CrossRef]
- Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M. Jensen, Ostrowski and Hermite-Hadamard Type Inequalities for h-Convex Stochastic Processes by Means of Center-Radius Order Relation. AIMS Math. 2023, 8, 16013–16030. [Google Scholar] [CrossRef]
- Stojiljković, V.; Mirkov, N.; Radenović, S. Variations in the Tensorial Trapezoid Type Inequalities for Convex Functions of Self-Adjoint Operators in Hilbert Spaces. Symmetry 2024, 16, 121. [Google Scholar] [CrossRef]
- Wada, S. On Some Refinement of the Cauchy–Schwarz Inequality. Linear Algebra Appl. 2007, 420, 433–440. [Google Scholar] [CrossRef]
- Dragomir, S. Some Properties of Tensorial Perspective for Convex Functions of Selfadjoint Operators in Hilbert Spaces. Filomat 2024, 38, 1499–1511. [Google Scholar]
- Chen, J.; Liao, W. Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 2010, 19, 035029. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.; Kim, P.; Park, J.; Choi, S.B. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery. Smart Mater. Struct. 2015, 24, 065015. [Google Scholar] [CrossRef]
- Kováčik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
- Orlicz, W. Über Konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [Google Scholar] [CrossRef]
- Bachar, M.; Khamsi, M.A.; Méndez, O. Uniform Convexity in Variable Exponent Sobolev Spaces. Symmetry 2023, 15, 1988. [Google Scholar] [CrossRef]
- Mizuta, Y. Duality of Herz-Morrey Spaces of Variable Exponent. Filomat 2016, 30, 1891–1898. [Google Scholar] [CrossRef]
- Sultan, M.; Sultan, B.; Aloqaily, A.; Mlaiki, N.; Sultan, M.; Sultan, B.; Aloqaily, A.; Mlaiki, N. Boundedness of Some Operators on Grand Herz Spaces with Variable Exponent. AIMS Math. 2023, 8, 12964–12985. [Google Scholar] [CrossRef]
- Fan, X. Variable Exponent Morrey and Campanato Spaces. Nonlinear Anal. Theory Methods Appl. 2010, 72, 4148–4161. [Google Scholar] [CrossRef]
- Izuki, M.; Nogayama, T.; Noi, T.; Sawano, Y. Weighted Local Hardy Spaces with Variable Exponents. Math. Nachr. 2023, 296, 5710–5785. [Google Scholar] [CrossRef]
- Capone, C.; Formica, M.R.; Giova, R. Grand Lebesgue Spaces with Respect to Measurable Functions. Nonlinear Anal. Theory Methods Appl. 2013, 85, 125–131. [Google Scholar] [CrossRef]
- Amri, A.; Khamsi, M.A.; Méndez, O.D. A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·). Symmetry 2023, 15, 1999. [Google Scholar] [CrossRef]
- Saiedinezhad, S. Some Functional Inequalities in Variable Exponent Spaces with a More Generalization of Uniform Continuity Condition. Int. J. Nonlinear Anal. Appl. 2016, 7, 29–38. [Google Scholar]
- Sultan, B.; Azmi, F.; Sultan, M.; Mehmood, M.; Mlaiki, N. Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces. Axioms 2022, 11, 583. [Google Scholar] [CrossRef]
- Huang, L.; Weisz, F.; Yang, D.; Yuan, W. Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces. Anal. Appl. 2023, 21, 279–328. [Google Scholar] [CrossRef]
- Nakano, H. Modulared Sequence Spaces. Proc. Jpn. Acad. 1951, 27, 508–512. [Google Scholar] [CrossRef]
- Rektorys, K. Hilbert Space. In Variational Methods in Mathematics, Science and Engineering; Rektorys, K., Ed.; Springer: Dordrecht, The Netherlands, 1977; pp. 66–80. ISBN 9789401164504. [Google Scholar]
- Koranyi, A. On Some Classes of Analytic Functions of Several Variables. Trans. Am. Math. Soc. 1961, 101, 520. [Google Scholar] [CrossRef]
- Bardaro, C.; Musielak, J.; Vinti, G. Nonlinear Integral Operators and Applications, de Gruyter Series in Nonlinear Analisys; Walter de Gruyter: Berlin, Germany, 2003. [Google Scholar]
- Khan, S.H.; Al-Mazrooei, A.E.; Latif, A. Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces. Axioms 2023, 12, 549. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J. Mixed-Norm Amalgam Spaces and Their Predual. Symmetry 2022, 14, 74. [Google Scholar] [CrossRef]
- Saibi, K. Variable Besov–Morrey Spaces Associated with Operators. Mathematics 2023, 11, 2038. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-Type Inequalities for Interval-Valued Preinvex Functions via Riemann–Liouville Fractional Integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Budak, H.; Hyder, A.A. Enhanced Bounds for Riemann-Liouville Fractional Integrals: Novel Variations of Milne Inequalities. AIMS Math. 2023, 12, 30760–30776. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Du, T.; Noor, K.I.; Awan, M.U.; Noor, M.A.; Du, T.; Noor, K.I. On 552 M-Convex Functions. AIMS Math. 2020, 5, 2376–2387. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones (Antofagasta) 2015, 34, 323–341. [Google Scholar] [CrossRef]
- Chen, T.; Sun, W. Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces. Math. Ann. 2021, 379, 108. [Google Scholar] [CrossRef]
- Sahu, D.R.; O’Regan, D.; Agarwal, R.P. Fixed Point Theory for Lipschitzian-Type Mappings 546 with Applications; Springer: New York, NY, USA, 2009; p. 219. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Abbas, M.; Breaz, D.; Cotîrlă, L.-I. Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents. Fractal Fract. 2024, 8, 518. https://doi.org/10.3390/fractalfract8090518
Afzal W, Abbas M, Breaz D, Cotîrlă L-I. Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents. Fractal and Fractional. 2024; 8(9):518. https://doi.org/10.3390/fractalfract8090518
Chicago/Turabian StyleAfzal, Waqar, Mujahid Abbas, Daniel Breaz, and Luminiţa-Ioana Cotîrlă. 2024. "Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents" Fractal and Fractional 8, no. 9: 518. https://doi.org/10.3390/fractalfract8090518
APA StyleAfzal, W., Abbas, M., Breaz, D., & Cotîrlă, L.-I. (2024). Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents. Fractal and Fractional, 8(9), 518. https://doi.org/10.3390/fractalfract8090518