Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications
Abstract
:1. Introduction
- It provides dual broad bands with triple distinct resonant frequencies in the S, C, and X bands.
- Its structure is a novel one with a compact size.
- The antenna is validated with an equivalent circuit diagram.
- It performs with acceptable radiation efficiency at the corresponding resonant frequencies.
- The antenna prototype is verified with measurements.
- The proposed fractal antenna achieved dual broad-band functionality by maintaining a compact volume (24 mm × 40 mm × 1.6 mm).
2. Design Framework
3. Prescribed Antenna Configuration
4. Iteration Procedure for Achieving the Final Design
5. Parametric Analysis for Achieving the Final Design
5.1. Effect of Various Ground Plane Structures on the Performance of the Proposed Antenna
5.2. Effect of Various Parameters of Defected Partial Ground Structure (DPGS)
5.3. Effect of Various Dielectric Materials
6. Prototype Fabrication and Validation Through Results Analysis
7. Equivalent Circuit Discussion
8. Comparative Analysis
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, D.H.; Ganguly, S. An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 2003, 45, 38–57. [Google Scholar] [CrossRef]
- Bisht, N.; Malik, P.K.; Das, S.; Islam, T.; Asha, S.; Alathbah, M. Design of a Modified MIMO Antenna Based on Tweaked Spherical Fractal Geometry for 5G New Radio (NR) Band N258 (24.25–27.25 GHz) Applications. Fractal Fract. 2023, 7, 718. [Google Scholar] [CrossRef]
- Kundu, S.; Jana, S.K. Leaf shaped CPW fed UWB antenna with triple notch bands for ground penetrating radar applications. Microw. Opt. Technol. Lett. 2018, 60, 930–936. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Yin, X.; Zhou, L. A Compact Triple-Band Printed Monopole Antenna for WLAN/WiMAX Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1853–1855. [Google Scholar] [CrossRef]
- Guenad, B.; Chaabane, A.; Aissaoui, D.; Bouacha, A.; Denidni, T.A. Compact Cauliflower-Shaped Antenna for Ultra-Wideband Applications. ACES J. 2023, 37, 68–77. [Google Scholar] [CrossRef]
- Varun Yadav, M.; Yadav, S.V.; Ali, T.; Dash, S.K.K.; Hegde, N.T.; Nair, V.G. A cutting-edge S/C/X band antenna for 5G and beyond application. AIP Adv. 2023, 13, 105123. [Google Scholar] [CrossRef]
- Varun Yadav, M.; Baudha, S.; Sanghi, V. A 5G rotated frame radiator for ultra-wideband microwave communication. Int. J. Microw. Wirel. Technol. 2023, 15, 1262–1270. [Google Scholar] [CrossRef]
- Benkhadda, O.; Ahmad, S.; Saih, M.; Chaji, K.; Reha, A.; Ghaffar, A.; Khan, S.; Alibakhshikenari, M.; Limiti, E. Compact Broadband Antenna with Vicsek Fractal Slots for WLAN and WiMAX Applications. Appl. Sci. 2022, 12, 1142. [Google Scholar] [CrossRef]
- Benkhadda, O.; Saih, M.; Ahmad, S.; Al-Gburi, A.J.A.; Zakaria, Z.; Chaji, K.; Reha, A. A Miniaturized Tri-Wideband Sierpinski Hexagonal-Shaped Fractal Antenna for Wireless Communication Applications. Fractal Fract. 2023, 7, 115. [Google Scholar] [CrossRef]
- Gupta, M.; Mathur, V. Hexagonal Fractal Antenna using Koch for Wireless Applications. Frequenz 2018, 72, 9–10. [Google Scholar] [CrossRef]
- Khan, M.A.; Rafique, U.; Savci, H.Ş.; Nordin, A.N.; Kiani, S.H.; Abbas, S.M. Ultra-Wideband Pentagonal Fractal Antenna with Stable Radiation Characteristics for Microwave Imaging Applications. Electronics 2022, 11, 2061. [Google Scholar] [CrossRef]
- Sun, L.; He, M.; Hu, J.; Zhu, Y.; Chen, H. A butterfly-shaped wideband microstrip patch antenna for wireless communication. Int. J. Antennas Propag. 2015, 2015, 328208. [Google Scholar] [CrossRef]
- Puri, S.C.; Das, S.; Tiary, M.G. A multi-band antenna using plus-shaped fractal-like elements and stepped ground plane. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22169. [Google Scholar] [CrossRef]
- Samson Daniel, R. Asymmetric coplanar strip-fed with Hilbert curve fractal antenna for multiband operations. Wirel. Pers. Commun. 2020, 116, 791–803. [Google Scholar] [CrossRef]
- Kalkhambkar, G.B.; Khanai, R.; Chindhi, P. Design and Characteristics Mode Analysis of a Cantor Set Fractal Monopole Antenna for IoT Applications. Prog. Electromagn. Res. C 2022, 119, 161–175. [Google Scholar] [CrossRef]
- Ez-Zaki, F.; Belahrach, H.; Ghammaz, A. Broadband microstrip antennas with Cantor set fractal slots for vehicular communications. Int. J. Microw. Wirel. Technol. 2021, 13, 295–308. [Google Scholar] [CrossRef]
- Nejdi, I.H.; Bri, S.; Marzouk, M.; Ahmad, S.; Rhazi, Y.; Ait Lafkih, M.; Sheikh, Y.A.; Ghaffar, A.; Hussein, M. UWB Circular Fractal Antenna with High Gain for Telecommunication Applications. Sensors 2023, 23, 4172. [Google Scholar] [CrossRef]
- Marzouk, M.; Rhazi, Y.; Nejdi, I.H.; Zerrad, F.-E.; Saih, M.; Ahmad, S.; Ghaffar, A.; Hussein, M. Ultra-Wideband Compact Fractal Antenna for WiMAX, WLAN, C and X Band Applications. Sensors 2023, 23, 4254. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.-D.; Liu, C.-Y.; Jiang, T. Analysis and Investigation of a Cantor Set Fractal UWB Antenna with a Notch-Band Characteristic. Prog. Electromagn. Res. B 2021, 33, 99–114. [Google Scholar] [CrossRef]
- Cao, Y.F.; Cheung, S.W.; Yuk, T.I. A Multiband Slot Antenna for GPS/WiMAX/WLAN Systems. IEEE Trans. Antennas Propag. 2015, 63, 952–958. [Google Scholar] [CrossRef]
- Shankar, S.; Upadhyay, D.K. A Fractal Monopole Antenna With Dual Polarization Reconfigurable Characteristics for X-Band Applications. IEEE Access 2023, 11, 95667–95680. [Google Scholar] [CrossRef]
- Amirinalloo, S.; Atlasbaf, Z. A CPW-fed fractal monopole antenna with a reduced ground plane in frequency range of 500 MHz-5.5 GHz. IET Microw. Antennas Propag. 2023, 17, 1006–1014. [Google Scholar] [CrossRef]
- Yassen, M.T.; Salim, A.J.; Hussan, M.R.; Ali, J.K. A Compact Dual-Band Dual-Polarized Antenna Based on Modified Minkowski Fractal. Prog. Electromagn. Res. C 2024, 140, 11–19. [Google Scholar] [CrossRef]
- Singh, S.; Varshney, A.; Sharma, V.; Elfergani, I.T.; Zebiri, C.; Rodriguez, J. A Compact off -Set Edge Fed Odd-Symmetric Hybrid Fractal Slotted Antenna for UWB and Space Applications. Prog. Electromagn. Res. B 2023, 102, 37–60. [Google Scholar] [CrossRef]
- Patel, U.; Upadhyaya, T.; Sorathiya, V.; Pandya, K.; Alwabli, A.; Dave, K.; Soliman, N.F.; El-Shafai, W. Split ring resonator geometry inspired crossed flower shaped fractal antenna for satellite and 5G communication applications. Results Eng. 2024, 22, 102110. [Google Scholar] [CrossRef]
- Palanisamy, S.; Vaddinuri, A.R.; Khan, A.A.; Faheem, M. Modeling of Inscribed Dual Band Circular Fractal Antenna for Wi-Fi Application Using Descartes Circle Theorem. Eng. Rep. 2024, e13019. [Google Scholar] [CrossRef]
- Rabie, M.M.; El-Gendy, M.S.; Eldamak, A.R.; Ibrahim, F.; El-Henawy, H. A compact wideband circularly polarized fractal slot antenna with rectangular island for X-band satellite applications. Cogent Eng. 2024, 11, 2322813. [Google Scholar] [CrossRef]
- Varshney, A.; Gençoğlan, D.N. High-Gain Multi-Band Koch Fractal FSS Antenna for Sub-6 GHz Applications. Appl. Sci. 2024, 14, 9022. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Basherlou, H.J.; Abd-Alhameed, R.A.; Noras, J.M. Dual-band monopole antenna for RFID applications. Future Internet 2019, 11, 31. [Google Scholar] [CrossRef]
- Ez-Zaki, F.; Belaid, K.A.; Ahmad, S.; Belahrach, H.; Ghammaz, A.; Al-Gburi, A.J.A.; Parchin, N.O. Circuit modelling of broadband antenna using vector fitting and foster form approaches for IoT applications. Electronics 2022, 11, 3724. [Google Scholar] [CrossRef]
- Sayidmarie, K.H.; Yahya, L.S. Modeling of dual-band crescent-shape monopole antenna for WLAN applications. Int. J. Electromagn. Appl. 2014, 4, 31–39. [Google Scholar]
- Meher, P.R.; Mishra, S.K. Design and Development of Mathematical Equivalent Circuit Model of Broadband Circularly Polarized Semi-Annular Ring-Shaped Monopole Antenna. Prog. Electromagn. Res. C 2023, 129, 73–87. [Google Scholar] [CrossRef]
- Srividhya, K.; Jothilakshmi, P. Compact coradiator dual polarized MIMO antenna for future 5G, emerging 6G and IoT applications. Eng. Sci. Technol. Int. J. 2024, 51, 101609. [Google Scholar] [CrossRef]
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
Ws | 28 | a | 2.5 |
Ls | 40 | b | 4.6 |
Wf | 2.95 | c | 3 |
Wf1 | 14 | d | 1.6 |
Lf | 14.6 | e | 2 |
Lg | 13.3 | f | 4.8 |
Sw | 2 | g | 0.5 |
Sl | 4 | h | 0.6 |
r | 9.6 | i | 0.3 |
r1 | 4.8 | j | 1.6 |
k | 1.0 |
Ref. No | Antenna Overall Size (mm3) | Type of Substrate Material | Operating Band (GHz) | Resonating Frequencies (GHz) | Gain (dBi) |
---|---|---|---|---|---|
[3] | 38.31 × 34.52 × 0.8 | FR-4 | 2.68–11.28 | NM | 2–5 |
[5] | 36.23 × 41 × 1.524 | RO-4350B | 3.05–10.96 | NM | 1.39–5.68 |
[8] | 50 × 50 × 1.6 | FR-4 | 2.48–6.7 | 3.6 5.3 | 2.78 5.32 |
[13] | 27 × 50 × 1.6 | FR-4 | 1.63–1.88 4.5–8.5 | 1.7 4.9 5.7 7.4 8.1 | 1.79 3.07 2.25 5.05 3.2 |
[17] | 40 × 24.5 × 1.6 | FR-4 | 2.70–11.0 | 3.17 5.82 7.86 9.16 | 1.7–6.25 |
[18] | 40 × 34 × 1.6 | FR-4 | 2.26–4.10 6.0–9.82 | 2.8 3.51 6.53 9.37 | 2.1–9.37 |
[19] | 31 × 28 × 1.6 | FR-4 | 3.22–6.5 | 3.71 5.9 | 3.2 4.15 |
[20] | 56 × 44 × 0.8 | NM | NM | 1.57 2.45 3.5 5.2 | 1.355 3.93 3.502 4.486 |
[21] | 42 × 32 × 1.57 | RT Duriod 5880 | 7.95–12.64 | NM | 5.71 |
[22] | 143.5 × 227.5 × 1.6 | FR-4 | 0.5–5.5 | NM | 1.1–2.6 |
[23] | 50 × 50 × 1.6 | FR-4 | 1.595–1.958 3.164–3.55 | 1.8, 3.5 | 1.25 2.09 |
[29] | 38 × 45 × 1.6 | FR-4 | 2.2–2.6 5.3–6.8 | 2.4 5.8 | 2 4 |
Proposed work | 28 × 40 × 1.6 | FR-4 | 2.5–4.2 7–9.8 | 3.22 7.64 9.41 | 2.45 5.04 5.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaminisasi, G.; Pardhasaradhi, P.; Prasad, N.; Madhav, B.T.P.; Algarni, A.D.; Das, S.; El Ghzaoui, M. Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications. Fractal Fract. 2025, 9, 29. https://doi.org/10.3390/fractalfract9010029
Yaminisasi G, Pardhasaradhi P, Prasad N, Madhav BTP, Algarni AD, Das S, El Ghzaoui M. Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications. Fractal and Fractional. 2025; 9(1):29. https://doi.org/10.3390/fractalfract9010029
Chicago/Turabian StyleYaminisasi, Guntamukkala, Pokkunuri Pardhasaradhi, Nagandla Prasad, Boddapati Taraka Phani Madhav, Abeer D. Algarni, Sudipta Das, and Mohammed El Ghzaoui. 2025. "Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications" Fractal and Fractional 9, no. 1: 29. https://doi.org/10.3390/fractalfract9010029
APA StyleYaminisasi, G., Pardhasaradhi, P., Prasad, N., Madhav, B. T. P., Algarni, A. D., Das, S., & El Ghzaoui, M. (2025). Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications. Fractal and Fractional, 9(1), 29. https://doi.org/10.3390/fractalfract9010029