Next Article in Journal
Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem
Previous Article in Journal
Discrete-Time Design of Fractional Delay-Based Repetitive Controller with Sliding Mode Approach for Uncertain Linear Systems with Multiple Periodic Signals
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence and Uniqueness Results for a Class of Fractional Integro-Stochastic Differential Equations

by
Ayed. R. A. Alanzi
1,
Shokrya S. Alshqaq
2,
Raouf Fakhfakh
1,* and
Abdellatif Ben Makhlouf
3
1
Department of Mathematics, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
2
Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
3
Department of Mathematics, Faculty of Sciences, Sfax University, Sfax BP 1171, Tunisia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2025, 9(1), 42; https://doi.org/10.3390/fractalfract9010042
Submission received: 19 November 2024 / Revised: 6 January 2025 / Accepted: 8 January 2025 / Published: 15 January 2025
(This article belongs to the Section General Mathematics, Analysis)

Abstract

:
The objective of this paper is to demonstrate the existence and uniqueness (EU) of solutions to a class of Fractional Integro-Stochastic Differential Equations (FISDEs) by utilizing the fixed-point technique (FPT) and stochastic techniques. Additionally, the paper proves the continuous dependence (CD) of solutions on the initial data. We examine the Hyers–Ulam stability (HUS) of FISDEs by applying Gronwall inequalities. Two theoretical examples are presented to demonstrate our findings.

1. Introduction

It is feasible to explain the behavior of a broad category of infinite-dimensional dynamical systems using fractional-order differentiation and integration [1]. Their applications extend across various fields such as mechanics, control theory, electricity, signal processing, chemistry, and biological systems [2,3,4]. Extensions to fractional calculus have been developed by Atangana, Baleanu, and other researchers. For instance, B. Ahmad et al. in [5] focus on the recent advancements in Fractional Differential Equations (FDEs) as well as inclusions and inequalities that involve the Hadamard derivative and integral. R. Almeida in [6] presented Caputo–Hadamard derivatives of variable fractional order. D. Baleanu et al. in [7] discussed the potential of fractional-order modeling in addressing complex systems within engineering and science. The authors in [8] presented a study on the Caputo modification of Hadamard fractional derivatives. Hadamard, in [9], provided an essay on the study of functions described by their Taylor series expansion. A. A. Kilbas et al. in [10] presented various results on ordinary and partial FDEs and their applications. C. Li et al. in [11] investigated various numerical methods for fractional calculus. I. Podlubny in [12], provides readers with all the essentials for a foundational study and the practical application of fractional derivatives and FDEs.
The use of non-integer-order derivatives has made FDEs a commonly used tool for studying systems with hereditary and memory characteristics. Usually using fixed-point theorems, the study of FDEs encompasses crucial aspects such as the EU of solutions, where specific conditions related to continuity and Lipschitz continuity are established. For instance, the authors in [13] investigated some stability results for a class of neutral integro-differential equations with delay of fractional order. Jia et al. in [14] presented the EU of the solutions of uncertain FDEs with Jump. The authors in [15] investigated the EU for uncertain Differential Equations (DEs) with time delay and V − jump. A. Zada et al. in [16] studied the EU and stability results for a class of higher-order DEs with fractional integrable impulses. S. Abbas in [17] presented the stability results for partial FDEs with multiple delays and impulses. The Ulam stability also plays an important role in ensuring the model’s reliability in practical applications by assessing how small changes in initial conditions or parameters affect the solutions [18,19].
In recent years, an increasing amount of research has been dedicated to Fractional Stochastic Differential Equations (FSDEs). For instance, M. Ahmad et al. in [20] studied the EU for a class of weighted impulsive FSDEs. S. Shahid et al. in [21] presented the EU and stability results for implicit random FDEs. S. Saifullah et al. in [22] investigated the EU for a class of FSDEs with Retarded and Advanced Arguments. S. Begum et al. in [23] presented some results about the EU and Ulam stability for a class of random FDEs via Hilfer derivative. A. Ben Makhlouf et al. in [24] investigated the EU and stability results for FSDEs via Caputo-Hadamard derivative. By integrating fractional calculus with stochastic processes, these equations offer a vital framework for analyzing and modeling complex systems affected by memory and randomness. The exploration of FSDEs offers significant advantages to fields like physics and engineering, as they provide valuable insight into complex systems’ dynamics; see ([25,26,27]).
A wide range of applications are covered by numerous research publications on the HUS concept, making finding precise solutions difficult. For example, with the help of a generalized Gronwall inequality, authors in [18] demonstrated the HUS of pantograph equations. An investigation of HUS for mixed-FSDEs was conducted by Rhaima et al. in [19]. M. Ahmad et al. in [28] investigated the HUS for neutral FSDEs. Authors in [29] studied the HUS for proportional Caputo neutral FSDEs. Y. Guo et al. in [30] proved the HUS for a class of impulsive Riemann—Liouville neutral FSDEs. Authors in [31] explored the HUS for FSDEs with fBm.
This paper builds on these foundational studies by presenting novel results tailored to a specific class of FISDEs. The analysis focuses on systems that incorporate the Hadamard fractional integral and the Caputo fractional derivative, two essential tools in fractional calculus that offer greater flexibility in modeling memory and hereditary properties in dynamic systems. The innovative contributions of this work include:
(1)
Establishing the EU of solutions for FISDEs.
(2)
Investigating the CD of solutions on initial data for the FISDEs.
(3)
Proving the HUS of the FISDEs.

2. Notational Preliminaries

Set { Ω , F , F : = ( F μ ) 1 μ T , P } with T > 1 , a complete probability space, and W ( μ ) is a d-dimensional Brownian motion.
Let X μ = L 2 ( Ω , F μ , P ) (for each μ [ 1 , T ] ) denote the collection of all F μ -measurable g : Ω R that are mean square integrable with
| | g | | m s = E | g | 2 .
Definition 1 
([10]). Let r > 0 . The Fractional Integral (FI) in the sense of Riemann–Liouville for H L 1 [ 1 , a ] is defined by
I r H ( y ) = 1 Γ ( r ) 1 y y s r 1 H ( s ) d s .
Definition 2 
([10]). The Caputo fractional derivative of order 0 < r < 1 of H is given by
D 1 r C H ( t ) = 1 Γ ( 1 r ) d d t 1 t t s r H ( s ) H ( 1 ) d s .
Definition 3 
([10]). Let r > 0 . The FI in the sense of Hadamard for H L 1 [ 1 , a ] is defined by
I r H H ( t ) = 1 Γ ( r ) 1 t log t s r 1 H ( s ) s d s .
Definition 4 
([10]). The Mittag–Leffler function is expressed as
E r ( z ) = ι = 0 + z ι Γ ( ι r + 1 ) ,
where r > 0 and z C .
Let us consider the following class of FISDEs:
D 1 ϑ C x ( s ) i = 1 m I ξ i H Φ i ( s , x ( s ) ) = F 1 ( s , x ( s ) ) + F 2 ( s , x ( s ) ) d W ( s ) d s , s [ 1 , T ] ,
where 1 2 < ϑ < 1 , 1 2 < ξ ι < 1 , 1 ι m , x ( 1 ) = a R and Φ ι , F j : [ 1 , T ] × R R are measurable such that
( H 1 )
There is L > 0 such that
ι = 1 m | Φ ι ( s , ϖ 1 ) Φ ι ( s , ϖ 2 ) | + ι = 1 2 | F ι ( s , ϖ 1 ) F ι ( s , ϖ 2 ) | L | ϖ 1 ϖ 2 | ,
for every ( s , ϖ 1 , ϖ 2 ) [ 1 , T ] × R × R .
( H 2 )
F j ( · , 0 ) and Φ k ( · , 0 ) , j = 1 , 2 , k = 1 , , m fulfills the following conditions:
| | F 2 ( · , 0 ) | | = ess sup s [ 1 , T ] | F 2 ( s , 0 ) | < , 1 T | Φ i ( s , 0 ) | 2 d s < , 1 T | F 1 ( s , 0 ) | 2 d s < .

3. Results on Existence and Uniqueness

Let D 2 be the Banach space of all processes ϖ that are F T -adapted, measurable and satisfy:
ϖ D 2 = sup 1 y T ϖ ( y ) m s < .
Consider the operator R a : D 2 D 2 defined for a R as follows:
R a ϖ ( s ) = a + j = 1 m 1 Γ ( ξ j ) 1 s log s l ξ j 1 l Φ j ( l , ϖ ( l ) ) d l + 1 Γ ( ϑ ) 1 s ( s l ) ϑ 1 F 1 ( l , ϖ ( l ) ) d l + 1 Γ ( ϑ ) 1 s ( s l ) ϑ 1 F 2 ( l , ϖ ( l ) ) d W ( l ) .
Lemma 1. 
For a R , R a is well-defined.
Proof. 
Let ϖ D 2 ; therefore
R a ϖ ( s ) m s 2 = E R a ϖ ( s ) 2 ( m + 3 ) [ a m s 2 + j = 1 m 1 Γ ( ξ j ) 2 E 1 s log s y ξ j 1 y Φ j ( y , ϖ ( y ) ) d y 2 + 1 Γ ( ϑ ) 2 E 1 s ( s y ) ϑ 1 F 1 ( y , ϖ ( y ) ) d y 2 + 1 Γ ( ϑ ) 2 E 1 s ( s y ) ϑ 1 F 2 ( y , ϖ ( y ) ) d W ( y ) 2 ] .
Using Cauchy–Schwarz inequality, we obtain
E 1 s ( log s y ) ξ j 1 y Φ j ( y , ϖ ( y ) ) d y 2 1 s ( log s y ) 2 ξ j 2 y 2 d y E 1 s Φ j ( y , ϖ ( y ) ) 2 d y 1 2 ξ j 1 ( log T ) 2 ξ j 1 E 1 s Φ j ( y , ϖ ( y ) ) 2 d y .
Using ( H 1 ) , we obtain:
Φ j ( y , ϖ ( y ) ) 2 2 L 2 ϖ ( y ) 2 + 2 Φ j ( y , 0 ) 2 .
Therefore,
E 1 s Φ j ( y , ϖ ( y ) ) 2 d y 2 ( T 1 ) L 2 sup y [ 1 , T ] E ϖ ( y ) 2 + 2 1 T Φ j ( y , 0 ) 2 d y .
Thus,
E 1 s ( log s y ) ξ j 1 y Φ j ( y , ϖ ( y ) ) d y 2
( log T ) 2 ξ j 1 2 ξ j 1 2 L 2 ( T 1 ) sup y [ 1 , T ] E ϖ ( y ) 2 + 2 1 T Φ j ( y , 0 ) 2 d y .
By applying the Cauchy–Schwarz inequality, it can be deduced that
E 1 s ( s y ) ϑ 1 F 1 ( y , ϖ ( y ) ) d y 2 1 s ( s y ) 2 ϑ 2 d y E 1 s F 1 ( y , ϖ ( y ) ) 2 d y 1 2 ϑ 1 ( s 1 ) 2 ϑ 1 E 1 s F 1 ( y , ϖ ( y ) ) 2 d y .
Using ( H 1 ) , we obtain:
F 1 ( y , ϖ ( y ) ) 2 2 L 2 ϖ ( y ) 2 + 2 F 1 ( y , 0 ) 2 .
Therefore,
E 1 s ( s y ) ϑ 1 F 1 ( y , ϖ ( y ) ) d y 2
( T 1 ) 2 ϑ 1 2 ϑ 1 2 L 2 ( T 1 ) sup y [ 1 , T ] E ϖ ( y ) 2 + 2 1 T F 1 ( y , 0 ) 2 d y .
Using the isometry of Itô, we obtain
E 1 s ( s y ) ϑ 1 F 2 ( y , ϖ ( y ) ) d W ( y ) 2 = E 1 s ( s y ) 2 ϑ 2 F 2 ( y , ϖ ( y ) ) 2 d y .
It follows from Assumption ( H 1 ) that
F 2 ( y , ϖ ( y ) ) 2 2 L 2 ϖ ( y ) 2 + 2 F 2 ( . , 0 ) 2 .
Then,
E 1 s ( s y ) ϑ 1 F 2 ( y , ϖ ( y ) ) d W ( y ) 2 2 L 2 E 1 s ( s y ) 2 ϑ 2 ϖ ( y ) 2 d y + 2 F 2 ( y , 0 ) 2 1 s ( s y ) 2 ϑ 2 d y 2 L 2 2 ϑ 1 T 1 2 ϑ 1 ϖ H 2 + 2 2 ϑ 1 T 1 2 ϑ 1 F 2 ( . , 0 ) 2 .
Thus, R a is well-defined. □
Theorem 1. 
Suppose that ( H 1 ) and ( H 2 ) hold, therefore Equation (1) admits a unique solution x D 2 satisfying x ( 1 ) = a .
Proof. 
Let us consider the norm · μ 1 , μ 2 on D 2 given by:
ϖ μ 1 , μ 2 = sup y [ 1 , T ] E ϖ ( y ) 2 h ( y ) , ϖ D 2 ,
where
h ( y ) = y μ 1 E 2 ϑ 1 μ 2 ( y 1 ) 2 ϑ 1
with μ 1 , μ 2 > 0 and
( m + 2 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 + T Γ ( ϑ ) 2 Γ ( 2 ϑ 1 ) μ 2 < 1 .
The space D 2 , · μ 1 , μ 2 is a Banach space because the norms · D 2 and · μ 1 , μ 2 are equivalent.
We will prove that R a is a contraction by using the weighted norm . μ 1 , μ 2 .
Let c R and ϖ 1 , ϖ 2 D 2 . Taking the expectation, we get:
E R a ϖ 1 ( t ) R a ϖ 2 ( t ) 2 ( m + 2 ) i = 1 m 1 Γ ( ξ i ) 2 E 1 t log t y ξ i 1 y [ Φ i ( y , ϖ 1 ( y ) ) Φ i ( y , ϖ 2 ( y ) ) ] d y 2 + 1 Γ ( ϑ ) 2 E 1 t t y ϑ 1 F 1 ( y , ϖ 1 ( y ) ) F 1 ( y , ϖ 2 ( y ) ) d y 2 + 1 Γ ( ϑ ) 2 E 1 t t y ϑ 1 F 2 ( y , ϖ 1 ( y ) ) F 2 ( y , ϖ 1 ( y ) ) d W ( y ) 2 .
Using Cauchy–Schwartz inequality, we obtain
E | 1 t ( t y ) ϑ 1 [ F 1 ( y , ϖ 1 ( y ) ) F 1 ( y , ϖ 2 ( y ) ) ] d y | 2
L 2 ( T 1 ) 1 t ( t y ) 2 ϑ 2 E ( | ϖ 1 ( y ) ϖ 2 ( y ) | 2 ) d y
and
E 1 t log t y ξ i 1 y Φ i ( y , ϖ 1 ( y ) ) Φ i ( y , ϖ 2 ( y ) ) d y 2
L 2 ( T 1 ) 1 t log t y 2 ξ i 2 y 2 E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y .
Using the isometry of Itô, we obtain
E 1 t ( t y ) ϑ 1 F 2 ( y , ϖ 1 ( y ) ) F 2 ( y , ϖ 1 ( y ) ) d W ( y ) 2 = E 1 t ( t y ) 2 ϑ 2 F 2 ( y , ϖ 1 ( y ) ) F 2 ( y , ϖ 1 ( y ) ) 2 d y L 2 1 t ( t y ) 2 ϑ 2 E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y .
Therefore,
E R a ϖ 1 ( t ) R a ϖ 2 ( t ) 2 ( m + 2 ) i = 1 m L 2 ( T 1 ) Γ ( ξ i ) 2 1 t log t y 2 ξ i 2 y 2 E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y + L 2 ( T 1 ) Γ ( ϑ ) 2 1 t t y 2 ϑ 2 E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y + L 2 Γ ( ϑ ) 2 1 t t y 2 ϑ 2 E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y ( m + 2 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 1 t log t y 2 ξ i 2 y E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y + T Γ ( ϑ ) 2 1 t t y 2 ϑ 2 E ϖ 1 ( y ) ϖ 2 ( y ) 2 d y ( m + 2 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 ϖ 1 ϖ 2 μ 1 , μ 2 2 1 t log t y 2 ξ i 2 y h ( y ) d y + T Γ ( ϑ ) 2 ϖ 1 ϖ 2 μ 1 , μ 2 2 1 t t y 2 ϑ 2 h ( y ) d y .
From Remark 1 in [13], we obtain
1 t ( t y ) 2 ϑ 2 h ( y ) d y = 1 t ( t y ) 2 ϑ 2 y μ 1 E 2 ϑ 1 μ 2 ( y 1 ) 2 ϑ 1 d y t μ 1 1 t ( t y ) 2 ϑ 2 E 2 ϑ 1 μ 2 ( y 1 ) 2 ϑ 1 d y Γ ( 2 ϑ 1 ) μ 2 t μ 1 E 2 ϑ 1 μ 2 ( t 1 ) 2 ϑ 1 .
Using the following inequality (see [13]),
1 t log t y 2 ξ i 2 y μ 1 y d y t μ 1 μ 1 2 ξ i 1 Γ ( 2 ξ i 1 ) ,
we get
1 t log t y 2 ξ i 2 y h ( y ) d y E 2 ϑ 1 μ 2 ( t 1 ) 2 ϑ 1 1 t log t y 2 ξ i 2 y y μ 1 d y h ( t ) Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 .
Consequently, based on the previously obtained inequalities, it follows that
E R a ϖ 1 ( t ) R a ϖ 2 ( t ) 2 ( m + 2 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 + T Γ ( ϑ ) 2 Γ ( 2 ϑ 1 ) μ 2 h ( t ) ϖ 1 ϖ 2 μ 1 , μ 2 2 .
Consequently, we have
R a ϖ 1 R a ϖ 2 μ 1 , μ 2 K ϖ 1 ϖ 2 μ 2 , μ 2
where
K 2 = ( m + 2 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 + T Γ ( ϑ ) 2 Γ ( 2 ϑ 1 ) μ 2 .
Hence, R a is a contraction. Thus, the desired result is established. □
Remark 1. 
In the previous theorem, we have used the weighted norm . μ 1 , μ 2 to obtain that R a is a contraction without any condition on the Lipschitz constant L.
Theorem 2. 
Let a 1 , a 2 R such that a 1 a 2 . Therefore,
lim a 1 a 2 sup s [ 1 , T ] x 1 ( s ) x 2 ( s ) m s = 0 ,
where x 1 ( s ) and x 2 ( s ) represent the solutions of (1) corresponding to the initial data a 1 and a 2 , respectively.
Proof. 
We have
x 1 ( s ) x 2 ( s ) = ( a 1 a 2 ) + j = 1 m 1 Γ ( ξ j ) 1 s log s l ξ j 1 l [ Φ j ( l , x 1 ( l ) ) Φ j ( l , x 2 ( l ) ) ] d l + 1 Γ ( ϑ ) 1 s ( s l ) ϑ 1 [ F 1 ( l , x 1 ( l ) ) F 1 ( l , x 2 ( l ) ) ] d l + 1 Γ ( ϑ ) 1 s ( s l ) ϑ 1 [ F 2 ( l , x 1 ( l ) ) F 2 ( l , x 2 ( l ) ) ] d W ( l ) .
Taking the expectation, we obtain:
x 1 ( s ) x 2 ( s ) m s 2 ( m + 3 ) [ a 1 a 2 m s 2 + j = 1 m 1 Γ ( ξ j ) 2 E 1 s log s y ξ j 1 y [ Φ j ( y , x 1 ( y ) ) Φ j ( y , x 2 ( y ) ) ] d y 2 + 1 Γ ( ϑ ) 2 E 1 s ( s y ) ϑ 1 [ F 1 ( y , x 1 ( y ) ) F 1 ( y , x 2 ( y ) ) ] d y 2 + 1 Γ ( ϑ ) 2 E 1 s ( s y ) ϑ 1 [ F 2 ( y , x 1 ( y ) ) F 2 ( y , x 2 ( y ) ) ] d W ( y ) 2 ] .
By applying the Cauchy–Schwarz inequality, we obtain
E | 1 s ( s y ) ϑ 1 [ F 1 ( y , x 1 ( y ) ) F 1 ( y , x 2 ( y ) ) ] d y | 2
L 2 ( T 1 ) 1 s ( s y ) 2 ϑ 2 E ( | x 1 ( y ) x 2 ( y ) | 2 ) d y
and
E 1 s log s y ξ i 1 y Φ j ( y , x 1 ( y ) ) Φ j ( y , x 2 ( y ) ) d y 2
L 2 ( T 1 ) 1 s log s y 2 ξ i 2 y 2 E x 1 ( y ) x 2 ( y ) 2 d y .
Using the isometry of Itô, we obtain
E 1 s ( s y ) ϑ 1 F 2 ( y , x 1 ( y ) ) F 2 ( y , x 1 ( y ) ) d W ( y ) 2 L 2 1 s ( s y ) 2 ϑ 2 E x 1 ( y ) x 2 ( y ) 2 d y .
Therefore,
x 1 ( s ) x 2 ( s ) m s 2 ( m + 3 ) [ a 1 a 2 m s 2 + i = 1 m L 2 ( T 1 ) Γ ( ξ i ) 2 1 s log s y 2 ξ i 2 y 2 E x 1 ( y ) x 2 ( y ) 2 d y + L 2 ( T 1 ) Γ ( ϑ ) 2 1 s s y 2 ϑ 2 E x 1 ( y ) x 2 ( y ) 2 d y + L 2 Γ ( ϑ ) 2 1 s s y 2 ϑ 2 E x 1 ( y ) x 2 ( y ) 2 d y ] ( m + 3 ) [ a 1 a 2 m s 2 + L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 1 s log s y 2 ξ i 2 y E x 1 ( y ) x 2 ( y ) 2 d y + L 2 T Γ ( ϑ ) 2 1 s s y 2 ϑ 2 E x 1 ( y ) x 2 ( y ) 2 d y ] ( m + 3 ) [ a 1 a 2 m s 2 + L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 x 1 x 2 μ 1 , μ 2 2 1 s log s y 2 ξ i 2 y h ( y ) d y + L 2 T Γ ( ϑ ) 2 x 1 x 2 μ 1 , μ 2 2 1 s s y 2 ϑ 2 h ( y ) d y ] .
Thus,
x 1 ( s ) x 2 ( s ) m s 2 ( m + 3 ) a 1 a 2 m s 2 + ( m + 3 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 + T Γ ( ϑ ) 2 Γ ( 2 ϑ 1 ) μ 2 h ( s ) x 1 x 2 μ 1 , μ 2 2 .
Hence,
x 1 x 2 μ 1 , μ 2 2 ( m + 3 ) a 1 a 2 m s 2 + ( m + 3 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 + T Γ ( ϑ ) 2 Γ ( 2 ϑ 1 ) μ 2 x 1 x 2 μ 1 , μ 2 2 .
Let μ 1 , μ 2 > 0 such that
C ( μ 1 , μ 2 ) = ( m + 3 ) L 2 i = 1 m ( T 1 ) Γ ( ξ i ) 2 Γ ( 2 ξ i 1 ) μ 1 2 ξ i 1 + T Γ ( ϑ ) 2 Γ ( 2 ϑ 1 ) μ 2 < 1 .
Then,
1 C ( μ 1 , μ 2 ) x 1 x 2 μ 1 , μ 2 2 ( m + 3 ) a 1 a 2 m s 2 .
Therefore,
lim a 1 a 2 sup s [ 1 , T ] x 1 ( s ) x 2 ( s ) m s = 0 .

4. Stability Results

Definition 5. 
Equation (1) is UHS with regard to ε if there exists M ˜ > 0 so that ε > 0 and each solution z D 2 , with z ( 1 ) = a 0 , of
E z ( t ) R a 0 z ( t ) 2 ε ; t [ 1 , T ] ,
there exists a solution ϖ D 2 of (1), with ϖ ( 1 ) = a 0 that satisfies
E z ( t ) ϖ ( t ) 2 M ˜ ε , t [ 1 , T ] .
For the UHS of (1), we present the following result.
Theorem 3. 
Assume that ( H 1 ) and ( H 2 ) hold; then, (1) is UHS with regard to ε.
Proof. 
Let ε > 0 and z ( s ) be a solution of (2). Let ϖ ( s ) be the solution of (1) with ϖ ( 1 ) = a 0 , so
ϖ ( s ) = a 0 + j = 1 m 1 Γ ( ξ j ) 1 s log s y ξ j 1 y Φ j ( y , ϖ ( y ) ) d y + 1 Γ ( ϑ ) 1 s s y ϑ 1 F 1 ( y , ϖ ( y ) ) d y + 1 Γ ( ϑ ) 1 s s y ϑ 1 F 2 ( y , ϖ ( y ) ) d W ( y ) .
Hence, we have
z ( s ) ϖ ( s ) = z ( s ) a 0 j = 1 m 1 Γ ( ξ j ) 1 s log s y ξ j 1 y Φ j ( y , z ( y ) ) d y 1 Γ ( ϑ ) 1 s s y ϑ 1 F 1 ( y , z ( y ) ) d y 1 Γ ( ϑ ) 1 s s y ϑ 1 F 2 ( y , z ( y ) ) d W ( y ) + j = 1 m 1 Γ ( ξ j ) 1 s log s y ξ j 1 y Φ j ( y , z ( y ) ) Φ j ( y , ϖ ( y ) ) d y + 1 Γ ( ϑ ) 1 s s y ϑ 1 F 1 ( y , z ( y ) ) F 1 ( y , ϖ ( y ) ) d y + 1 Γ ( ϑ ) 1 s s y ϑ 1 F 2 ( y , z ( y ) ) F 2 ( y , ϖ ( y ) ) d W ( y ) .
The inequality (2) leads to the conclusion that
E z ( s ) ϖ ( s ) 2 ( m + 3 ) ε + j = 1 m 1 Γ ( ξ j ) 2 E 1 s log s y ξ j 1 y [ Φ j ( y , z ( y ) ) Φ j ( y , ϖ ( y ) ) ] d y 2 + 1 Γ ( ϑ ) 2 E 1 s s y ϑ 1 [ F 1 ( y , z ( y ) ) F 1 ( y , ϖ ( y ) ) ] d y 2 + 1 Γ ( ϑ ) 2 E 1 s s y ϑ 1 [ F 2 ( y , z ( y ) ) F 2 ( y , ϖ ( y ) ) ] d W ( y ) 2 .
We obtain
E z ( s ) ϖ ( s ) 2 ( m + 3 ) ε + j = 1 m log T 2 ξ j 1 L 2 ( 2 ξ j 1 ) Γ ( ξ j ) 2 1 s E z ( y ) ϖ ( y ) 2 d y + T 1 2 ϑ 1 L 2 ( 2 ϑ 1 ) Γ ( ϑ ) 2 1 s E z ( y ) ϖ ( y ) 2 d y + L 2 Γ ( ϑ ) 2 1 s s y 2 ϑ 2 E z ( y ) ϖ ( y ) 2 d y d 1 ε + d 2 1 s E z ( y ) ϖ ( y ) 2 d y + d 3 1 s s y 2 ϑ 2 E z ( y ) ϖ ( y ) 2 d y ,
where
d 1 = m + 3 , d 2 = L 2 ( m + 3 ) j = 1 m log T 2 ξ j 1 ( 2 ξ j 1 ) Γ ( ξ j ) 2 + T 1 2 ϑ 1 ( 2 ϑ 1 ) Γ ( ϑ ) 2 and d 3 = ( m + 3 ) L 2 Γ ( ϑ ) 2 .
Using Generalized Gronwall inequality (see [32]), we obtain
E z ( s ) ϖ ( s ) 2 d 1 ε + d 2 1 s E z ( y ) ϖ ( y ) 2 d y E 2 ϑ 1 d 3 Γ ( 2 ϑ 1 ) s 1 2 ϑ 1 ε d 4 + d 5 1 s E z ( y ) ϖ ( y ) 2 d y ,
where
d 4 = d 1 E 2 ϑ 1 d 3 Γ ( 2 ϑ 1 ) T 1 2 ϑ 1 and d 5 = d 2 E 2 ϑ 1 d 3 Γ ( 2 ϑ 1 ) T 1 2 ϑ 1 .
It follows from inequality of Gronwall that
E z ( s ) ϖ ( s ) 2 ε d 4 e d 5 ( T 1 ) .
Thus,
E z ( s ) ϖ ( s ) 2 ε M ˜ , s [ 1 , T ] ,
where M ˜ = d 4 e d 5 ( T 1 ) .
Thus, we obtain the UHS with regard to ε of Equation (1). □

5. Examples

Example 1. 
Consider the FISDEs:
D 1 ϑ C ϖ ( s ) i = 1 2 I 3 + i 8 H Φ i ( s , ϖ ( s ) ) = F 1 ( s , ϖ ( s ) ) + F 2 ( s , ϖ ( s ) ) d W ( s ) d s , 1 < s 10 ,
where,
Φ j ( s , ϖ ( s ) ) = 1 7 sin ( 2 ϖ ( s ) ) , j = 1 , 2 F 1 ( s , ϖ ( s ) ) = cos ( 3 ϖ ( s ) ) s 4 + 5 , F 2 ( s , ϖ ( s ) ) = ϖ ( s ) s 6 + 7 .
The assumptions ( H 1 ) and ( H 2 ) are satisfied for L = 3 . According to Theorem 1, Equation (4) admits a unique solution ϖ. In addition, we obtain the UHS with regard to ε of the equation from Theorem 3.
Example 2. 
Consider the FISDEs:
D 1 ϑ C ϖ ( s ) i = 1 2 I 2 + i 7 H Φ i ( s , ϖ ( s ) ) = F 1 ( s , ϖ ( s ) ) + F 2 ( s , ϖ ( s ) ) d W ( s ) d s , 1 < s 8 ,
where
Φ j ( s , ϖ ( s ) ) = 1 5 cos ( j ϖ ( s ) ) , j = 1 , 2 F 1 ( s , ϖ ( s ) ) = ϖ ( s ) s 2 + 1 , F 2 ( s , ϖ ( s ) ) = sin ( ϖ ( s ) ) s 6 + 4 .
The assumptions ( H 1 ) and ( H 2 ) are satisfied for L = 1 . According to Theorem 1, Equation (5) admits a unique solution ϖ. Furthermore, we obtain the UHS with regard to ε of the equation from Theorem 3.

6. Conclusions

This work examines the EU of FISDEs using the FPT method and a new norm on D 2 . The CD of solutions on initial data is also established, demonstrating that small changes in the initial conditions result in correspondingly small variations in the solution. To achieve this, a generalized Gronwall inequality was utilized, providing a powerful tool for handling integral inequalities that arise in the analysis. Additionally, stochastic analysis techniques were employed to thoroughly investigate the HUS of FISDEs. We conclude the paper with two theoretical examples that illustrate our main findings. In future work, we intend to extend our results to the case of pantograph FISDEs.

Author Contributions

Conceptualization, S.S.A.; Methodology, R.F.; Validation, S.S.A.; Formal analysis, R.F.; Investigation, A.R.A.A. and S.S.A.; Resources, A.B.M.; Data curation, R.F. and A.B.M.; Writing—original draft, A.B.M.; Writing—review & editing, R.F. and A.B.M.; Visualization, R.F.; Project administration, A.R.A.A.; Funding acquisition, A.R.A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No. (DGSSR-2024-02-01025).

Data Availability Statement

Data is contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9781849963350. [Google Scholar]
  2. Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics; Wiley-ISTE: Hoboken, NJ, USA, 2014. [Google Scholar]
  3. Naifar, O.; Nagy, A.M.; Ben, M.A.; Kharrat, M.; Hammami, M.A. Finite-time stability of linear fractional-order time-delay systems. Int. J. Robust Nonlinear Control 2019, 29, 180–187. [Google Scholar] [CrossRef]
  4. Petras, I.; Magin, R.L. Simulation of drug uptake in a two compartmental fractional model for a biological system. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4588–4595. [Google Scholar] [CrossRef] [PubMed]
  5. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  6. Almeida, R. Caputo-Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 2017, 38, 1–19. [Google Scholar] [CrossRef]
  7. Baleanu, D.; Machado, J.A.; Luo, A.C. Fractional Dynamics and Control; Springer Science and Business Media: New York, NY, USA, 2011. [Google Scholar]
  8. Gambo, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef]
  9. Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
  10. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  11. Li, C.P.; Zeng, F.H. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
  12. Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
  13. Makhlouf, A.B.; El-hady, E.; Boulaaras, S.; Mchiri, L. Stability Results of Some Fractional Neutral Integrodifferential Equations with Delay. J. Funct. Spaces 2022, 2022, 8211420. [Google Scholar] [CrossRef]
  14. Jia, Z.; Liu, X.; Li, C. Fixed Point Theorems Applied in Uncertain Fractional Differential Equation with Jump. Symmetry 2020, 12, 765. [Google Scholar] [CrossRef]
  15. Jia, Z.; Liu, X.; Li, C. Existence, uniqueness, and stability of uncertain delay differential equations with V-jump. Adv. Differ. Equ. 2020, 2020, 440. [Google Scholar] [CrossRef]
  16. Zada, A.; Ali, W.; Farina, S. Hyers—Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods Appl. Sci. 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
  17. Abbas, S.; Benchohra, M.; Sivasundaram, S. Ulam stability for partial fractional differential inclusions with multiple delays and impulses via Picard operators. Nonlinear Stud. 2013, 20, 623. [Google Scholar]
  18. Makhlouf, A.B.; Mchiri, L.; Rguigui, H. Ulam-Hyers stability of pantograph fractional stochastic differential equations. Math. Methods Appl. Sci. 2023, 46, 4134–4144. [Google Scholar]
  19. Rhaima, M.; Mchiri, L.; Makhlouf, A.B.; Ahmed, H. Ulam type stability for mixed Hadamard and Riemann—Liouville Fractional Stochastic Differential Equations. Chaos, Solitons Fractals 2023, 178, 114356. [Google Scholar] [CrossRef]
  20. Ahmad, M.; Zada, A.; Ahmad, J.; Salam, M.A.A.E. Analysis of Stochastic Weighted Impulsive Neutral ψ-Hilfer Integro-Fractional Differential System with Delay. Math. Probl. Eng. 2022, 2022, 1490583. [Google Scholar] [CrossRef]
  21. Shahid, S.; Saifullah, S.; Riaz, U.; Zada, A.; Moussa, S.B. Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations. Qual. Theory Dyn. Syst. 2023, 22, 81. [Google Scholar] [CrossRef]
  22. Saifullah, S.; Shahid, S.; Zada, A. Analysis of Neutral Stochastic Fractional Differential Equations Involving Riemann–Liouville Fractional Derivative with Retarded and Advanced Arguments. Qual. Theory Dyn. Syst. 2024, 23, 39. [Google Scholar] [CrossRef]
  23. Begum, S.; Zada, A.; Saifullah, S.; Popa, I.L. Dynamical behavior of random fractional integro-differential equation via hilfer fractional derivative. UPB Sci. Bull. Ser. A 2022, 84, 137–148. [Google Scholar]
  24. Makhlouf, A.B.; Mchiri, L. Some results on the study of Caputo-Hadamard fractional stochastic differential equations. Chaos Solitons Fractals 2022, 155, 111757. [Google Scholar] [CrossRef]
  25. Omar, O.A.M.; Elbarkouky, R.A.; Ahmed, H.M. Fractional stochastic models for COVID-19: Case study of Egypt. Results Phys. 2021, 23, 104018. [Google Scholar] [CrossRef]
  26. Han, T.; Li, Z.; Zhang, K. Exact solutions of the stochastic fractional long–short wave interaction system with multiplicative noise in generalized elastic medium. Results Phys. 2023, 44, 106174. [Google Scholar] [CrossRef]
  27. Matteo, A.D. Response of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitations: A Path Integral approach based on Laplace’s method of integration. Probabilistic Eng. Mech. 2023, 71, 103402. [Google Scholar] [CrossRef]
  28. Ahmad, M.; Zada, A.; Ghaderi, M.; George, R.; Rezapour, S. On the Existence and Stability of a Neutral Stochastic Fractional Differential System. Fractal Fract. 2022, 6, 203. [Google Scholar] [CrossRef]
  29. Makhlouf, A.B.; Sallay, J. Some results on proportional Caputo neutral fractional stochastic differential equations. Discret. Contin. Dyn.-Syst. 2024, 17, 3102–3115. [Google Scholar] [CrossRef]
  30. Guo, Y.; Shu, X.; Li, Y.; Xu, F. The existence and Hyers–Ulam stability of solution for an impulsive Riemann—Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2. Bound. Value Probl. 2019, 2019, 59. [Google Scholar]
  31. Guo, Y.; Chen, M.; Shu, X.; Xu, F. The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm. Stoch. Anal. Appl. 2021, 39, 643–666. [Google Scholar] [CrossRef]
  32. Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alanzi, A.R.A.; Alshqaq, S.S.; Fakhfakh, R.; Ben Makhlouf, A. Existence and Uniqueness Results for a Class of Fractional Integro-Stochastic Differential Equations. Fractal Fract. 2025, 9, 42. https://doi.org/10.3390/fractalfract9010042

AMA Style

Alanzi ARA, Alshqaq SS, Fakhfakh R, Ben Makhlouf A. Existence and Uniqueness Results for a Class of Fractional Integro-Stochastic Differential Equations. Fractal and Fractional. 2025; 9(1):42. https://doi.org/10.3390/fractalfract9010042

Chicago/Turabian Style

Alanzi, Ayed. R. A., Shokrya S. Alshqaq, Raouf Fakhfakh, and Abdellatif Ben Makhlouf. 2025. "Existence and Uniqueness Results for a Class of Fractional Integro-Stochastic Differential Equations" Fractal and Fractional 9, no. 1: 42. https://doi.org/10.3390/fractalfract9010042

APA Style

Alanzi, A. R. A., Alshqaq, S. S., Fakhfakh, R., & Ben Makhlouf, A. (2025). Existence and Uniqueness Results for a Class of Fractional Integro-Stochastic Differential Equations. Fractal and Fractional, 9(1), 42. https://doi.org/10.3390/fractalfract9010042

Article Metrics

Back to TopTop