Numerical Approximations and Fractional Calculus: Extending Boole’s Rule with Riemann–Liouville Fractional Integral Inequalities
Abstract
:1. Introduction
2. Main Results
2.1. Fractional Boole’s Type Inequality
2.2. Fractional Boole’s Type Inequality for Bounded Functions
2.3. Fractional Boole’s Type Inequality for Lipschitzian Functions
2.4. Fractional Boole’s Type Inequality for Functions of Bounded Variation
3. Numerical Analysis with Graphical Representations
4. Applications to Numerical Integration
4.1. Application to Boole’s Formula
4.2. Application to Midpoint Formula:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Boston, MA, USA, 2006. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley: New York, NY, USA; London, UK, 1993. [Google Scholar]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, J. Fractional calculus-A different approach to the analysis of viscoelastically damped structures. Aiaa J. 1983, 21, 741–748. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. Fractional calculus in the transient analysis of viscoelastically damped structures. Aiaa J. 1985, 23, 918–925. [Google Scholar] [CrossRef]
- Dwilewicz, R.J. A short history of Convexity. Differ.-Geom.-Dyn. Syst. 2009, 11, 12–129. [Google Scholar]
- Robertson, E.F. Jacques Hadamard (1865–1963); MacTutor History of Mathematics Archive, University of St Andrews: St. Andrews, UK, 1963. [Google Scholar]
- Mandelbrojt, S.; Schwartz, L. Jacques Hadamard (1865–1963). Bull. Am. Math. Soc. 1965, 71, 107–129. [Google Scholar] [CrossRef]
- Searcóid, M. "Lipschitz Functions", Metric Spaces; Springer undergraduate mathematics series; Springer: Berlin, Germany; New York, NY, USA, 2006; ISBN 978-1-84628-369-7. [Google Scholar]
- Bartle, R.G.; Sherbert, D.R. Introduction to Real Analysis; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gibb, D. A Course in Interpolation and Numerical Integration for the Mathematical Laboratory; No. 2. G.; Bell & Sons, Limited: London, UK, 1915. [Google Scholar]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1975. [Google Scholar]
- Leader, J.J. Numerical Analysis and Scientific Computation; Addison Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Eves, H. An introduction to the History of Mathematics; Saunders: Philadelphia, PA, USA, 1990. [Google Scholar]
- Budak, H.; Kösem, P.; Kara, H. On new Milne-type inequalities for fractional integrals. J. Inequal. Appl. 2023, 2023, 10. [Google Scholar] [CrossRef]
- Mateen, A.; Özcan, S.; Zhang, Z.; Mohsin, B.B. On Newton–Cotes Formula-Type Inequalities for Multiplicative Generalized Convex Functions via Riemann–Liouville Fractional Integrals with Applications to Quadrature Formulas and Computational Analysis. Fractal Fract. 2024, 8, 541. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang Math. 1999, 30, 53–58. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s Inequality and Applications. Rgmia Res. Rep. Collect. 1999, 2. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kara, H. New version of fractional Simpson-type inequalities for twice differentiable functions. Adv. Difference Equ. 2021, 2021, 460. [Google Scholar] [CrossRef]
- Mateen, A.; Zhang, Z.; Budak, H.; Ozcan, S. Some novel inequalities of Weddle’s formula type for Riemann–Liouville fractional integrals with their applications to numerical integration. Chaos Solitons Fractals 2025, 192, 115973. [Google Scholar] [CrossRef]
- Gao, S.; Shi, W. On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex. Int. J. Pure Appl. Math. 2012, 74, 33–41. [Google Scholar]
- Krukowski, M. New error bounds for Boole’s rule. arXiv 2018, arXiv:1808.02803. [Google Scholar]
- Erden, S.; Iftikhar, S.; Kumam, P.; Awan, M.U. Some Newton’s like inequalities with applications. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2020, 114, 1–13. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kösem, P. On New version of Newton’s inequalities for Riemann–Liouville fractional integrals. Rocky Mt. J. Math. 2023, 53, 49–64. [Google Scholar] [CrossRef]
- Iftikhar, S.; Kumam, P.; Erden, S. Newton’s-type integral inequalities via local fractional integrals. Fractals 2020, 28, 2050037. [Google Scholar] [CrossRef]
- Jamei, M.M. Unified error bounds for all Newton Cotes quadrature rules. J. Numer. Math. 2015, 23, 67–80. [Google Scholar]
- Al-Alaoui, M.A. A class of numerical integration rules with first order derivatives. ACM Signum Newsl. 1996, 31, 25–44. [Google Scholar] [CrossRef]
- Nasir, J.; Qaisar, S.; Butt, S.I.; Khan, K.A.; Mabela, R.M. Some Simpson’s Riemann–Liouville fractional integral inequalities with applications to special functions. J. Funct. Spaces 2022, 2022, 2113742. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Shehzadi, A.; Budak, H.; Haider, W.; Chen, H. Error Bounds of Boole’s Formula for different Function Classes. Appl. Math. J. Chin. Univ. 2025. accepted. [Google Scholar]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
Left Term | Right Term | |
---|---|---|
0.1 | 0.737923 | 7.43516 |
0.2 | 0.542236 | 5.08644 |
0.3 | 0.394662 | 3.49176 |
0.4 | 0.282683 | 2.41946 |
0.5 | 0.197466 | 1.70182 |
0.6 | 0.132648 | 1.22749 |
0.7 | 0.0835601 | 0.923571 |
0.8 | 0.0467237 | 0.741396 |
0.9 | 0.0195095 | 0.647624 |
1.0 | 0.0000931233 | 0.618822 |
Left Term | Right Term | |
---|---|---|
0.1 | 0.0342898 | 1.39218 |
0.2 | 0.0253673 | 0.952403 |
0.3 | 0.0185739 | 0.65381 |
0.4 | 0.013374 | 0.453028 |
0.5 | 0.0093851 | 0.318655 |
0.6 | 0.00632887 | 0.22984 |
0.7 | 0.00399883 | 0.172933 |
0.8 | 0.00223952 | 0.138822 |
0.9 | 0.000932294 | 0.121263 |
1.0 | 0.0000144492 | 0.11587 |
n | Quadrature Formulae | Absolute Error |
---|---|---|
4 | Boole’s Rule | 0.00597078 |
2 | Simpson’s Rule | 0.0278834 |
1 | Trapezoidal Rule | 0.3508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateen, A.; Haider, W.; Shehzadi, A.; Budak, H.; Bin-Mohsin, B. Numerical Approximations and Fractional Calculus: Extending Boole’s Rule with Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2025, 9, 52. https://doi.org/10.3390/fractalfract9010052
Mateen A, Haider W, Shehzadi A, Budak H, Bin-Mohsin B. Numerical Approximations and Fractional Calculus: Extending Boole’s Rule with Riemann–Liouville Fractional Integral Inequalities. Fractal and Fractional. 2025; 9(1):52. https://doi.org/10.3390/fractalfract9010052
Chicago/Turabian StyleMateen, Abdul, Wali Haider, Asia Shehzadi, Hüseyin Budak, and Bandar Bin-Mohsin. 2025. "Numerical Approximations and Fractional Calculus: Extending Boole’s Rule with Riemann–Liouville Fractional Integral Inequalities" Fractal and Fractional 9, no. 1: 52. https://doi.org/10.3390/fractalfract9010052
APA StyleMateen, A., Haider, W., Shehzadi, A., Budak, H., & Bin-Mohsin, B. (2025). Numerical Approximations and Fractional Calculus: Extending Boole’s Rule with Riemann–Liouville Fractional Integral Inequalities. Fractal and Fractional, 9(1), 52. https://doi.org/10.3390/fractalfract9010052