Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering
Abstract
:1. Introduction
2. Model Development
2.1. Particle Swarm Optimization-Based Fractional-Order Grey Model
2.2. K-Means Clustering Method
- reflects the goodness of fit of the statistical model used to predict displacement, ensuring that points with more reliable and predictable displacement trends are grouped together.
- z accounts for the topographical variations on the slope, which can significantly influence deformation due to factors like soil composition and water infiltration.
- captures the rate and intensity of displacement changes over time, helping to distinguish between regions with steady movements and those experiencing more dynamic shifts.
3. Case Study and Dataset
4. Results
4.1. Clustering Results of Monitoring Points
4.2. Prediction Results of the Proposed Model
4.3. Comparison with Other Models
5. Discussion
5.1. Effect of Data Quality and Model Performance
5.2. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federico, A.; Popescu, M.; Elia, G.; Fidelibus, C.; Internò, G.; Murianni, A. Prediction of time to slope failure: A general framework. Environ. Earth Sci. 2012, 66, 245–256. [Google Scholar]
- Borja, R.I.; White, J.A. Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech. 2010, 5, 1–14. [Google Scholar]
- Stead, D.; Eberhardt, E.; Coggan, J. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng. Geol. 2006, 83, 217–235. [Google Scholar]
- Liu, X.; Jiang, S.H.; Xie, J.; Li, X. Bayesian inverse analysis with field observation for slope failure mechanism and reliability assessment under rainfall accounting for nonstationary characteristics of soil properties. Soils Found. 2025, 65, 101568. [Google Scholar]
- Vick, L.M.; Böhme, M.; Rouyet, L.; Bergh, S.G.; Corner, G.D.; Lauknes, T.R. Structurally controlled rock slope deformation in northern Norway. Landslides 2020, 17, 1745–1776. [Google Scholar]
- Meng, Z.; Zhang, J.; Hu, Y.; Ancey, C. Temporal Prediction of Landslide-Generated Waves Using a Theoretical-Statistical Combined Method. J. Mar. Sci. Eng. 2023, 11, 1151. [Google Scholar] [CrossRef]
- Pánek, T.; Klimeš, J. Temporal behavior of deep-seated gravitational slope deformations: A review. Earth-Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Shehadeh, A.; Alshboul, O.; Almasabha, G. Slope displacement detection in construction: An automated management algorithm for disaster prevention. Expert Syst. Appl. 2024, 237, 121505. [Google Scholar]
- Liu, X.; Li, X.; Ma, G.; Rezania, M. Characterization of spatially varying soil properties using an innovative constraint seed method. Comput. Geotech. 2025, 183, 107184. [Google Scholar]
- Deng, Z.; Gao, Q.; Huang, M.; Wan, N.; Zhang, J.; He, Z. From data processing to behavior monitoring: A comprehensive overview of dam health monitoring technology. Structures 2025, 71, 108094. [Google Scholar]
- Strenk, P.M.; Wartman, J. Uncertainty in seismic slope deformation model predictions. Eng. Geol. 2011, 122, 61–72. [Google Scholar]
- Tseng, F.M.; Yu, H.C.; Tzeng, G.H. Applied hybrid grey model to forecast seasonal time series. Technol. Forecast. Soc. Change 2001, 67, 291–302. [Google Scholar] [CrossRef]
- Mao, M.; Chirwa, E.C. Application of grey model GM (1, 1) to vehicle fatality risk estimation. Technol. Forecast. Soc. Change 2006, 73, 588–605. [Google Scholar]
- Liu, J.; Liu, S.; Fang, Z. Fractional-order reverse accumulation generation gm (1, 1) model and its applications. J. Grey Syst. 2015, 27, 52–62. [Google Scholar]
- Yuan, Y.; Zhao, H.; Yuan, X.; Chen, L.; Lei, X. Application of fractional order-based grey power model in water consumption prediction. Environ. Earth Sci. 2019, 78, 1–8. [Google Scholar]
- Zeng, B.; Liu, S. A self-adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application. Math. Methods Appl. Sci. 2017, 40, 7843–7857. [Google Scholar]
- Yuxiao, K.; Shuhua, M.; Yonghong, Z. Variable order fractional grey model and its application. Appl. Math. Model. 2021, 97, 619–635. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, L. An Optimization Scheme for Enhancing the Performance of Fractional-order Grey Prediction Models in Seasonal Forecasting Tasks: The Case of the Fractional-order GM (1, 1) Model. J. Grey Syst. 2024, 36, 96–105. [Google Scholar]
- Chen, H.; Huang, S.; Xu, Y.P.; Teegavarapu, R.S.; Guo, Y.; Nie, H.; Xie, H. Using baseflow ensembles for hydrologic hysteresis characterization in humid basins of Southeastern China. Water Resour. Res. 2024, 60, e2023WR036195. [Google Scholar]
- Zhang, J.; Zhang, X.; Li, H.; Fan, Y.; Meng, Z.; Liu, D.; Pan, S. Optimization of Water Quantity Allocation in Multi-Source Urban Water Supply Systems Using Graph Theory. Water 2025, 17, 61. [Google Scholar]
- Xia, L.; Ren, Y.; Wang, Y. Forecasting China’s total renewable energy capacity using a novel dynamic fractional order discrete grey model. Expert Syst. Appl. 2024, 239, 122019. [Google Scholar]
- Yazan, E.; Talu, M.F. Comparison of the stochastic gradient descent based optimization techniques. In Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Khan, S.; Naseem, I.; Malik, M.A.; Togneri, R.; Bennamoun, M. A fractional gradient descent-based rbf neural network. Circuits Syst. Signal Process. 2018, 37, 5311–5332. [Google Scholar]
- Chen, H.; Xu, B.; Qiu, H.; Huang, S.; Teegavarapu, R.S.; Xu, Y.P.; Guo, Y.; Nie, H.; Xie, H. Adaptive assessment of reservoir scheduling to hydrometeorological comprehensive dry and wet condition evolution in a multi-reservoir region of southeastern China. J. Hydrol. 2025, 648, 132392. [Google Scholar]
- Zhang, R.; Mao, S.; Kang, Y. A novel traffic flow prediction model: Variable order fractional grey model based on an improved grey evolution algorithm. Expert Syst. Appl. 2023, 224, 119943. [Google Scholar]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Kachitvichyanukul, V. Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manag. Syst. 2012, 11, 215–223. [Google Scholar]
- De Morais, A.M.; Araujo, J.M.; Costa, E.B. Monitoring student performance using data clustering and predictive modelling. In Proceedings of the 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, Madrid, Spain, 22–25 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–8. [Google Scholar]
- Oyelade, J.; Isewon, I.; Oladipupo, O.; Emebo, O.; Omogbadegun, Z.; Aromolaran, O.; Uwoghiren, E.; Olaniyan, D.; Olawole, O. Data clustering: Algorithms and its applications. In Proceedings of the 2019 19th International Conference on Computational Science and Its Applications (ICCSA), St. Petersburg, Russia, 1–4 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 71–81. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar]
- Zhu, H.; Wang, Y.; Wang, K.; Chen, Y. Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem. Expert Syst. Appl. 2011, 38, 10161–10169. [Google Scholar]
- Li, J.; Meng, Z.; Zhang, J.; Chen, Y.; Yao, J.; Li, X.; Qin, P.; Liu, X.; Cheng, C. Prediction of Seawater Intrusion Run-Up Distance Based on K-Means Clustering and ANN Model. J. Mar. Sci. Eng. 2025, 13, 377. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Yuan, Z.; Bian, Y.; Liu, W.; Qi, F.; Ma, H.; Zheng, S.; Meng, Z. Predicting the Deformation of a Slope Using a Random Coefficient Panel Data Model. Fractal Fract. 2024, 8, 429. [Google Scholar] [CrossRef]
- Krenker, A.; Bešter, J.; Kos, A. Introduction to the artificial neural networks. In Artificial Neural Networks: Methodological Advances and Biomedical Applications; InTech: Singapore, 2011; pp. 1–18. [Google Scholar]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: Delhi, India, 2009. [Google Scholar]
Monitoring Points | z | ||
---|---|---|---|
TP1-8 | 0.9594 | 2830 | 0.4379 |
TP2-7 | 0.9834 | 2803 | 0.5726 |
TP2-8 | 0.6445 | 2702 | 0.6688 |
TP2-9 | 0.6032 | 2602 | 0.8081 |
TP3-12 | 0.9285 | 2593 | 0.8808 |
TP3-13 | 0.9713 | 2703 | 0.8449 |
TP4-2 | 0.9656 | 2548 | 0.3317 |
TP4-6 | 0.9618 | 2603 | 0.9981 |
TP4-7 | 0.9745 | 2783 | 0.9979 |
TP5-5 | 0.9608 | 2498 | 0.6358 |
TP5-8 | 0.9797 | 2732 | 0.9953 |
TP5-9 | 0.9722 | 2826 | 0.9979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Hu, Y.; Jiang, S.; Zheng, S.; Zhang, J.; Yuan, Z.; Yao, S. Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering. Fractal Fract. 2025, 9, 210. https://doi.org/10.3390/fractalfract9040210
Meng Z, Hu Y, Jiang S, Zheng S, Zhang J, Yuan Z, Yao S. Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering. Fractal and Fractional. 2025; 9(4):210. https://doi.org/10.3390/fractalfract9040210
Chicago/Turabian StyleMeng, Zhenzhu, Yating Hu, Shunqiang Jiang, Sen Zheng, Jinxin Zhang, Zhenxia Yuan, and Shaofeng Yao. 2025. "Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering" Fractal and Fractional 9, no. 4: 210. https://doi.org/10.3390/fractalfract9040210
APA StyleMeng, Z., Hu, Y., Jiang, S., Zheng, S., Zhang, J., Yuan, Z., & Yao, S. (2025). Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering. Fractal and Fractional, 9(4), 210. https://doi.org/10.3390/fractalfract9040210