New Fractional Integral Inequalities Involving the Fox-H and Meijer-G Functions for Convex and Synchronous Functions
Abstract
:1. Introduction and Motivation
2. Preliminaries
3. New Fractional Integral Inequalities Involving Fox-H Functions for Convex Functions
4. New Fractional Integral Inequalities Involving Fox-H Functions for Synchronous Functions
- Over the interval , the functions and operate asynchronously.
- Over the interval , the functions are negative.
- Over the interval , a pair of functions from behave positively, while the third one is negative.
- Over the interval , the functions and are asynchronous.
- Over the interval , three functions are negative.
- One function on is negative, whereas the other two, , are positive.
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
m-E-K | Multiple Erdélyi–Kober |
M-S-M | Marichev–Saigo–Maeda |
E-K | Erdélyi–Kober |
R-L | Riemann–Liouville |
References
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Krutikov, V.; Gutova, S.; Tovbis, E.; Kazakovtsev, L.; Semenkin, E. Relaxation Subgradient Algorithms with Machine Learning Procedures. Mathematics 2022, 10, 3959. [Google Scholar] [CrossRef]
- Tovbis, E.; Krutikov, V.; Stanimirović, P.; Meshechkin, V.; Popov, A.; Kazakovtsev, L. A Family of Multi-Step Subgradient Minimization Methods. Mathematics 2023, 11, 2264. [Google Scholar] [CrossRef]
- Raubitzek, S.; Mallinger, K.; Neubauer, T. Combining Fractional Derivatives and Machine Learning: A Review. Entropy 2023, 25, 35. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Bhosale, S.; Vyawahare, V.A. A survey of fractional calculus applications in artificial neural networks. Artif. Intell. Rev. 2023, 56, 13897–13950. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K. Applications of fractional calculus to parabolic starlike and uniformly convex functions. Comput. Math. Appl. 2000, 39, 57–69. [Google Scholar] [CrossRef]
- Chesneau, C. Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities. Axioms 2023, 12, 109. [Google Scholar] [CrossRef]
- Liu, W.J.; Ngo, Q.A.; Huy, V.N. Several interesting integral inequalities. J. Math. Inequal. 2009, 3, 201–212. [Google Scholar] [CrossRef]
- Dahmani, Z. A note on some new fractional results involving convex functions. Acta Math. Univ. Comen. 2012, LXXXI, 241–246. [Google Scholar]
- Houas, M. Some integral inequalities involving Saigo fractional integral operators. J. Interdiscip. Math. 2018, 21, 681–694. [Google Scholar] [CrossRef]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L.; Dahmani, Z. Fractional integral inequalities involving convex functions via Marichev-Saigo-Maeda approach. J. Math. Ext. 2021, 15, 1–17. [Google Scholar]
- Singhal, M.; Mitta, E. On new fractional integral inequalities using Marichev-Saigo-Maeda operator. Math. Methods Appl. Sci. 2023, 46, 2055–2071. [Google Scholar] [CrossRef]
- Chebyshev, P.L. On approximate expressions of some integrals in terms of others, taken within the same limits. Proc. Math. Soc. Kharkov 1882, 2, 93–98. [Google Scholar]
- Fink, A.M.; Jodeit, M., Jr. On Chebyshev’s other inequality. In Inequalities in Statistics and Probability; Tong, Y.L., Gupta, S.S., Eds.; Institute of Mathematical Statistics Lecture Notes, Monograph Series: Mount Laurel, NJ, USA, 1984; Volume 5, pp. 115–120. [Google Scholar]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Çelik, B.; Gürbüz, M.Ç.; Özdemir, M.E.; Set, E. On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators. J. Inequal. Appl. 2020, 2020, 246. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Rahman, G.; Nisar, K.S.; Samraiz, M. Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals. Adv. Differ. Equ. 2020, 2020, 96. [Google Scholar] [CrossRef]
- Purohit, S.D.; Kalla, S.L. Certain Inequalities Related to the Chebyshev’s Functional Involving Erdelyi-Kober Operators. Sci. Ser. A Math. Sci. 2014, 25, 55–63. [Google Scholar]
- Nale Asha, B.; Panchal, S.K.; Chinchane, V.L.; Al-Bayatti, H.M.Y. Fractional integral inequalities using Marichev-Saigo Maeda fractional integral operator. Progr. Fract. Differ. Appl. 2021, 7, 249–255. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Wiley: New York, NY, USA, 1994; Pitman Research Notes in Mathematics. [Google Scholar]
- Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Kiryakova, V.; Yuri, L. Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Open Phys. 2013, 11, 1314–1336. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R.; Alharbi, R.; Kasmani, R.M.; Qureshi, S. New Inequalities Using Multiple Erdélyi–Kober Fractional Integral Operators. Fractal Fract. 2024, 8, 180. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R.; Alharbi, R.; Kasmani, R.M.; Qureshi, S. An Application of Multiple Erdélyi–Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions. Fractal Fract. 2024, 8, 438. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. Am. Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
- Set, E.; Noor, M.A.; Awan, M.U. özpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 169, 10. [Google Scholar]
- Nisar, K.S.; Rahman, G.; Khan, A.; Tassaddiq, A.; Abouzaid, M.S. Certain generalized fractional integral inequalities. AIMS Math. 2020, 5, 1588–1602. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Khan, A.; Rahman, G.; Nisar, K.S.; Abouzaid, M.S.; Khan, I. Fractional integral inequalities involving Marichev–Saigo–Maeda fractional integral operator. J. Inequal. Appl. 2020, 2020, 185. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach Science Publishers: London, UK, 1993. [Google Scholar]
- Dimovski, I. Operational calculus for a class of differential operators. C. R. Acad. Bulg. Sci. 1966, 19, 1111–1114. [Google Scholar]
- Marichev, O.I. Volterra equation of Mellin convolution type with a horn function in the kernel. Vescì. Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1974, 1, 128–129. [Google Scholar]
- Raina, R.K. Solution of Abel-type integral equation involving the Appell hypergeometric function. Integral Transform. Spec. Funct. 2010, 21, 515–522. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods and Special Functions, Proceedings of the 2nd International Workshop, Varna, Bulgaria, 30 May–1 June 1996; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; CRC Press: Sofia, Bulgaria, 1998; Volume 19, pp. 386–400. [Google Scholar]
- Tassaddiq, A.; Srivastava, R.; Kasmani, R.M.; Alharbi, R. Complex Generalized Representation of Gamma Function Leading to the Distributional Solution of a Singular Fractional Integral Equation. Axioms 2023, 12, 1046. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Cattani, C.; Alharbi, R.; Kasmani, R.M.; Qureshi, S. Operational Calculus of the Quantum Statistical Fermi-Dirac and Bose-Einstein Functions Leading to the Novel Fractional Kinetic Equations. Fractal Fract. 2024, 8, 749. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Cattani, C. Fractional distributional representation of gamma function and the generalized kinetic equation. Alex. Eng. J. 2023, 82, 577–586. [Google Scholar] [CrossRef]
- Karp, D.B.; Prilepkina, E.G. Completely Monotonic Gamma Ratio and Infinitely Divisible H-Function of Fox. Comput. Methods Funct. Theory 2016, 16, 135–153. [Google Scholar] [CrossRef]
- Mehrez, K. New integral representations for the Fox–Wright functions and its applications. J. Math. Anal. Appl. 2018, 468, 650–673. [Google Scholar] [CrossRef]
- Mehrez, K. Positivity of certain classes of functions related to the Fox H-functions with applications. Anal. Math. Phys. 2021, 11, 114. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Conejero, J.A.; Garibo-i-Orts, Ò.; Lizama, C. Inferring the fractional nature of Wu Baleanu trajectories. Nonlinear Dyn. 2023, 111, 12421–12431. [Google Scholar] [CrossRef]
- Khan, Z.A.; Liaqat, M.I.; Akgül, A.; Conejero, J.A. Qualitative Analysis of Stochastic Caputo–Katugampola Fractional Differential Equations. Axioms 2024, 13, 808. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Cattani, C.; Alharbi, R.; Almutairi, D.K.; Kasmani, R.M. New Fractional Integral Inequalities Involving the Fox-H and Meijer-G Functions for Convex and Synchronous Functions. Fractal Fract. 2025, 9, 256. https://doi.org/10.3390/fractalfract9040256
Tassaddiq A, Cattani C, Alharbi R, Almutairi DK, Kasmani RM. New Fractional Integral Inequalities Involving the Fox-H and Meijer-G Functions for Convex and Synchronous Functions. Fractal and Fractional. 2025; 9(4):256. https://doi.org/10.3390/fractalfract9040256
Chicago/Turabian StyleTassaddiq, Asifa, Carlo Cattani, Rabab Alharbi, Dalal Khalid Almutairi, and Ruhaila Md Kasmani. 2025. "New Fractional Integral Inequalities Involving the Fox-H and Meijer-G Functions for Convex and Synchronous Functions" Fractal and Fractional 9, no. 4: 256. https://doi.org/10.3390/fractalfract9040256
APA StyleTassaddiq, A., Cattani, C., Alharbi, R., Almutairi, D. K., & Kasmani, R. M. (2025). New Fractional Integral Inequalities Involving the Fox-H and Meijer-G Functions for Convex and Synchronous Functions. Fractal and Fractional, 9(4), 256. https://doi.org/10.3390/fractalfract9040256