Some Results Related to Booth Lemniscate and Integral Operators
Abstract
:1. Introduction
- (a)
- If , then
- (b)
- If , then
- (c)
- If , then
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Sim, Y.J.; Thomas, D.K. On the difference of coefficients of starlike and convex functions. Mathematics 2020, 8, 1521. [Google Scholar] [CrossRef]
- Piejko, K.; Sokol, J. Hadamard product of analytic functions and some special regions and curves. J. Ineq. Appl. 2013, 2013, 420. [Google Scholar] [CrossRef]
- Aydoğan, S.; Sakar, F.M. Radius of starlikeness of p-valent λ-fractional operator. Appl. Math. Comput. 2019, 357, 374–378. [Google Scholar] [CrossRef]
- Hotta, I.; Nunokawa, M. On strongly starlike and convex functions of order α and type β. Mathematica 2011, 53, 51–56. [Google Scholar]
- Nunokawa, M.; Goyal, S.P.; Kumar, R. Sufficient conditions for starlikeness. J. Class. Anal. 2012, 1, 85–90. [Google Scholar] [CrossRef]
- Lecko, A.; Murugusundaramoorthy, G.; Sivasubramanian, S. On a subclass of analytic functions that are starlike with respect to a boundary point involving exponential function. J. Funct. Spaces 2022, 2022, 4812501. [Google Scholar] [CrossRef]
- Cho, N.; Murugusundaramoorthy, G.; Karthikeyan, K.; Sivasubramanian, S. Properties of λ-pseudo-starlike functions with respect to a boundary point. AIMS Math. 2022, 7, 8701–8714. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 18–23 August 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. Volume 1, pp. 157–169. [Google Scholar]
- Kumar, S.; Ravichandran, V. A subclasses of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Sokol, J. A certain class of starlike functions. Comput. Math. Appl. 2011, 62, 611–619. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Trojnar-Spelina, L. Further results for starlike functions related with Booth lemniscate. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1235–1238. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z.; Tahir, M. A generalized conic domain and its applications to certain subclasses of analytic functions. Rocky Mt. J. Math. 2019, 49, 2325–2346. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Murugusundaramoorthy, G.; Cho, N. Some inequalities on Bazilevic class of functions involving quasisubordination. AIMS Math. 2021, 6, 7111–7124. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate. Turk. J. Math. 2018, 42, 1380–1399. [Google Scholar]
- Malik, S.; Ali, R.M.; Ravichandran, V. The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 2715–2732. [Google Scholar] [CrossRef]
- Piejko, K.; Sokol, J. On Booth Lemniscate and Hadamard product of analytic functions. Math. Slovaca 2015, 65, 1337–1344. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker Inc.: New York, MY, USA, 2000. [Google Scholar]
- Orouji, Z. A new subclass of analytic functions and some results related to Booth lemniscate. Int. J. Nonlinear Anal. Appl. 2025, 16, 17–25. [Google Scholar] [CrossRef]
- Libera, R.J. Some Classes of Regular Univalent Functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1993, 69, 234–237. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions Which Map the Interior of the Unit Circle Upon Simple Regions. Ann. Math. Second Ser. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. A certain one-parameter additive family of operators defined on analytic functions. J. Math. Anal. Appl. 1986, 118, 80–87. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saigo, M.; Owa, S. A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 1988, 131, 412–420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, B.; Orouji, Z.; Ebadian, A. Some Results Related to Booth Lemniscate and Integral Operators. Fractal Fract. 2025, 9, 271. https://doi.org/10.3390/fractalfract9050271
Khan B, Orouji Z, Ebadian A. Some Results Related to Booth Lemniscate and Integral Operators. Fractal and Fractional. 2025; 9(5):271. https://doi.org/10.3390/fractalfract9050271
Chicago/Turabian StyleKhan, Bilal, Zahra Orouji, and Ali Ebadian. 2025. "Some Results Related to Booth Lemniscate and Integral Operators" Fractal and Fractional 9, no. 5: 271. https://doi.org/10.3390/fractalfract9050271
APA StyleKhan, B., Orouji, Z., & Ebadian, A. (2025). Some Results Related to Booth Lemniscate and Integral Operators. Fractal and Fractional, 9(5), 271. https://doi.org/10.3390/fractalfract9050271