A Novel Approach to Solving Fractional Navier–Stokes Equations Using the Elzaki Transform
Abstract
:1. Introduction
2. Elzaki Transform
Mittag–LefflerFunctions (M-LFs)
3. The Method
4. Illustrative Examples
5. Numerical Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract.Calculus. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- He, J. Nonlinear oscillation with fractional derivative and its applications. In Proceedings of the International Conference on Vibrating Engineering, Dalian, China, 6–9 August 1998; pp. 288–291. [Google Scholar]
- He, J. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15, 86–90. [Google Scholar]
- He, J. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167, 57–68. [Google Scholar] [CrossRef]
- Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Springer-Verlag: New York, NY, USA, 1997; pp. 291–348. [Google Scholar]
- Yang, Y.; Li, H. Neural Ordinary Differential Equations for robust parameter estimation in dynamic systems with physical priors. Appl. Soft Comput. 2024, 169, 112649. [Google Scholar] [CrossRef]
- Jiang, N.; Feng, Q.; Yang, X.; He, J.-R.; Li, B.-Z. The octonion linear canonical transform: Properties and applications. Chaos Solitons Fractals 2025, 192, 116039. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakraverty, S. Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. 2019, 1, 16. [Google Scholar] [CrossRef]
- Burqan, A.; El-Ajou, A.; Saadeh, R.; Al-Smadi, M. A New Efficient Technique Using Laplace Transforms and Smooth Expansions to Construct a Series Solution to the Time-Fractional Navier–Stokes Equations. Alex. Eng. J. 2022, 61, 1069–1077. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Abbasbandy, S.; Rashidi, M.M. Analytical Solution of Fractional Navier–Stokes Equation by Using Modified Laplace Decomposition Method. Ain Shams Eng. J. 2014, 5, 569–574. [Google Scholar] [CrossRef]
- Jaber, K.K.; Ahmad, R.S. Analytical solution of the time fractional Navier–Stokes equation. Ain Shams Eng. J. 2018, 9, 1917–1927. [Google Scholar] [CrossRef]
- Jafari, H.; Zair, M.Y.; Jassim, H.K. Analysis of fractional Navier–Stokes equations. Heat Transf. 2023, 52, 2859–2877. [Google Scholar] [CrossRef]
- Cao, S.; Weerasekera, N.; Shingdan, D.R. Modeling approaches for fluidic mass transport in next generation micro and nano biomedical sensors. Eur. J. Biomed. Res. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Albalawi, K.S.; Mishra, M.N.; Goswami, P. Analysis of the multi-dimensional Navier–Stokes equation by Caputo fractional operator. Fractal Fract. 2022, 6, 743. [Google Scholar] [CrossRef]
- Kubra, K.T.; Ali, R.; Alqahtani, R.T.; Gulshan, S.; Iqbal, Z. Analysis and comparative study of a deterministic mathematical model of SARS-COV-2 with fractal-fractional operators: A case study. Sci Rep. 2024, 14, 6431. [Google Scholar] [CrossRef]
- Kubra, K.T.; Gulshan, S.; Ali, R. An Atangana–Baleanu derivative-based fractal-fractional order model for the monkey pox virus: A case study of USA. Partial. Differ. Equations Appl. Math. 2024, 9, 100623. [Google Scholar] [CrossRef]
- Kubra, K.T.; Ali, R.; Ujala, B.; Gulshan, S.; Rasool, T.; Ali, M.R. Exploring the dynamics of leprosy transmission with treatment through a fractal–fractional differential model. Partial. Differ. Equations Appl. Math. 2024, 12, 100909. [Google Scholar] [CrossRef]
- Kubra, K.T.; Ali, R. Modeling and analysis of novel COVID-19 outbreak under fractal-fractional derivative in Caputo sense with power-law: A case study of Pakistan. Model. Earth Syst. Environ. 2023, 9, 3865–3882. [Google Scholar] [CrossRef]
- Abd Elmohmoud, E.M.; Elzaki, T.M. An Innovative Analytical Approach for the Solution of Fractional Differential Equations Using the Integral Transform. Axioms 2025, 14, 363. [Google Scholar] [CrossRef]
- Hilal, E.M.; Elzaki, T.M. Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method. J. Funct. Spaces 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Elzaki, T.M.; Biazar, J. Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations. World Appl. Sci. J. 2013, 24, 944–948. [Google Scholar]
- Elzaki, T.M. Application of Projected Differential Transform Method on Nonlinear Partial Differential Equations with Proportional Delay in One Variable. World Appl. Sci. J. 2014, 30, 345–349. [Google Scholar]
- Elzaki, T.M.; Ishag, A.A. Modified Laplace Transform and Ordinary Differential Equations with Variable Coefficients. World Eng. Appl. Sci. J. 2019, 10, 79–84. [Google Scholar]
- Singh, B.K.; Kumar, P. FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier—Stokes equation. Ain Shams Eng. J. 2018, 9, 827–834. [Google Scholar] [CrossRef]
ET at | ET at | ET at | Exact at | Error at | Error at | Error at | |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.25 | −352.0455600 | −340.4036197 | −329.8347830 | −328.8159866 | 23.229573 | 11.5876 | 1.0187964 |
0.5 | −217.3828893 | −207.7083154 | −200.1793427 | −199.5158089 | 17.86708 | 8.19251 | 0.6635338 |
0.75 | −142.4530514 | −131.5726108 | −123.0691661 | −122.3207488 | 20.132303 | 9.25186 | 0.7484173 |
1 | −96.62788655 | −85.25989990 | −76.28517361 | −75.49053641 | 21.13735 | 9.76936 | 0.7946372 |
ET at | ET at | ET at | Exact at | Error at | Error at | Error at | |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.25 | 352.0455600 | 340.4036197 | 329.8347830 | 328.8159866 | −23.22957 | −11.58763 | −1.018796 |
0.5 | 217.3828893 | 207.7083154 | 200.1793427 | 199.5158089 | −17.86708 | −8.192507 | −0.663534 |
0.75 | 142.4530514 | 131.5726108 | 123.0691661 | 122.3207488 | −20.1323 | −9.251862 | −0.748417 |
1 | 96.62788655 | 85.25989990 | 76.28517361 | 75.49053641 | −21.13735 | −9.769363 | −0.794637 |
τ | ET at | ET at | ET at | Exact at | Error at | Error at | Error at |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.25 | 0.6574249216 | 0.6356842653 | 0.6159475676 | 0.6140450236 | −0.04338 | −0.021639 | −0.001903 |
0.5 | 0.4059500962 | 0.3878833835 | 0.3738234582 | 0.3725843470 | −0.033366 | −0.015299 | −0.001239 |
0.75 | 0.2660229154 | 0.2457043155 | 0.2298246196 | 0.2284269930 | −0.037596 | −0.017277 | −0.001398 |
1 | 0.1804470442 | 0.1592179802 | 0.1424581928 | 0.1409742534 | −0.039473 | −0.018244 | −0.001484 |
ET at | ET at | ET at | Exact at | Error at | Error at | Error at | |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.25 | −0.6574249216 | −0.6356842653 | −0.6159475676 | −0.6140450236 | 0.04338 | 0.021639242 | 0.001902544 |
0.5 | −0.4059500962 | −0.3878833835 | −0.3738234582 | −0.3725843470 | 0.033366 | 0.015299037 | 0.001239111 |
0.75 | −0.2660229154 | −0.2457043155 | −0.2298246196 | −0.2284269930 | 0.037596 | 0.017277323 | 0.001397627 |
1 | −0.1804470442 | −0.1592179802 | −0.1424581928 | −0.1409742534 | 0.039473 | 0.018243727 | 0.001483939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elzaki, T.M.; Abd Elmohmoud, E.M. A Novel Approach to Solving Fractional Navier–Stokes Equations Using the Elzaki Transform. Fractal Fract. 2025, 9, 396. https://doi.org/10.3390/fractalfract9060396
Elzaki TM, Abd Elmohmoud EM. A Novel Approach to Solving Fractional Navier–Stokes Equations Using the Elzaki Transform. Fractal and Fractional. 2025; 9(6):396. https://doi.org/10.3390/fractalfract9060396
Chicago/Turabian StyleElzaki, Tarig M., and Eltaib M. Abd Elmohmoud. 2025. "A Novel Approach to Solving Fractional Navier–Stokes Equations Using the Elzaki Transform" Fractal and Fractional 9, no. 6: 396. https://doi.org/10.3390/fractalfract9060396
APA StyleElzaki, T. M., & Abd Elmohmoud, E. M. (2025). A Novel Approach to Solving Fractional Navier–Stokes Equations Using the Elzaki Transform. Fractal and Fractional, 9(6), 396. https://doi.org/10.3390/fractalfract9060396