Gas Sensing Approaches Based on WO3 Nanowire-Back Gated Devices †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterizatiion of Pt/WO3 Nanowires
3.2. Gas Sensing Property
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kolakov, A. Some recent trends in fabrication, functionalization, and characterization of metal oxide gas sensors. Int. J. Nanotechnol. 2008, 5, 12–14. [Google Scholar]
- Comini, E.; Barrato, C.; Concin, I.; Fagila, G.; Falasconi, M.; Ferroni, M.; Galstyan, V.; Gobbi, E.; Ponzoni, A.; Vomiero, A.; et al. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators B Chem. 2013, 179, 3–20. [Google Scholar] [CrossRef]
- Annanouch, F.E.; Haddi, Z.; Vallejos, S.; Umek, P.; Guttmann, P.; Bittencourt, C.; Llobet, E. Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Interfaces 2015, 7, 6842–6851. [Google Scholar] [CrossRef] [PubMed]
- Kolmakov, A.; Chen, X.; Moskovits, M. Functionalizing nanowires with catalytic nanoparticles for gas sensing application. J. Nanosci. Nanotechnol. 2008, 8, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Annanouch, F.E.; Haddi, Z.; Ling, M.; Vallejos, S.; Shujah, T.; Umek, P.; Bittencourt, C.; Blackman, C.; Llobet, E. Aerosol-Assisted CVD-grown PdO nanoparticle-decorated Tungsten Oxide nanoneedles extremely sensitive to Hydrogen. ACS Appl. Mater. Interfaces 2016, 8, 10413–10421. [Google Scholar] [CrossRef] [PubMed]
- Vallejos, S.; Stoycheva, T.; Annanouch, F.E.; Llobet, E.; Umek, P.; Figueras, E.; Canè, C.; Gràcia, I.; Blackman, C. Microsensors based on Pt-nanoparticle functionalised tungsten oxide nanoneedles for monitoring hydrogen sulfide. RSC Adv. 2014, 4, 1489–1495. [Google Scholar] [CrossRef]
- Vallejos, S.; Umek, P.; Stoycheva, T.; Annanouch, F.; Llobet, E.; Correig, X.; De Marco, P.; Bittencourt, C.; Blackman, C. Single-step deposition of Au- and Pt-nanoparticle functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Funct. Mater. 2013, 23, 1313–1322. [Google Scholar] [CrossRef]
- Annanouch, F.E.; Vallejos, S.; Stoycheva, T.; Blackman, C.; Llobet, E. Aerosol assisted chemical vapour deposition of gas sensitive nanomaterials. Thin Solid Films 2013, 548, 703–709. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welearegay, T.G.; Calavia, R.; Ionescu, R.; Llobet, E. Gas Sensing Approaches Based on WO3 Nanowire-Back Gated Devices. Proceedings 2017, 1, 437. https://doi.org/10.3390/proceedings1040437
Welearegay TG, Calavia R, Ionescu R, Llobet E. Gas Sensing Approaches Based on WO3 Nanowire-Back Gated Devices. Proceedings. 2017; 1(4):437. https://doi.org/10.3390/proceedings1040437
Chicago/Turabian StyleWelearegay, Tesfalem G., Raul Calavia, Radu Ionescu, and Eduard Llobet. 2017. "Gas Sensing Approaches Based on WO3 Nanowire-Back Gated Devices" Proceedings 1, no. 4: 437. https://doi.org/10.3390/proceedings1040437
APA StyleWelearegay, T. G., Calavia, R., Ionescu, R., & Llobet, E. (2017). Gas Sensing Approaches Based on WO3 Nanowire-Back Gated Devices. Proceedings, 1(4), 437. https://doi.org/10.3390/proceedings1040437