Endogenous–Exogenous Chemicals with Neurotoxic Potential †
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pałasz, A.; Menezes, I.C.; Worthington, J.J. The role of brain gaseous neurotransmitters in anxiety. Pharmacol. Rep. 2021, 73, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Zuhra, K.; Szabo, C. The two faces of cyanide: An environmental toxin and a potential novel mammalian gasotransmitter. FEBS J. 2022, 289, 2481–2515. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.S. Neuroprotein targets of γ-diketone metabolites of aliphatic and aromatic solvents that induce central-peripheral axonopathy. Toxicol. Pathol. 2020, 48, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, Z.; Zhang, L.; Liu, W.; Ren, X.; Nie, L.; Wu, D.; Guo, Z.; Liu, W.; Yang, X.; et al. Protein pyrrole adducts are associated with elevated glucose indices and clinical features of diabetic diffuse neuropathies. J. Diabetes 2022, 14, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.S.; Palmer, V.S.; Kisby, G.E. Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J. Neurol. Sci. 2020, 419, 117185. [Google Scholar] [CrossRef] [PubMed]
- Morellato, A.E.; Umansky, C.; Pontel, L.B. The toxic side of one-carbon metabolism and epigenetics. Redox Biol. 2021, 40, 101850. [Google Scholar] [CrossRef] [PubMed]
- Tulpule, K.; Dringen, R. Formaldehyde in brain: An overlooked player in neurodegeneration? J. Neurochem. 2013, 127, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, Y.; Zhao, H.; Ren, J.; Su, W.; Kou, Y.; Wang, Q.; Cheng, J.; Tong, Z. Tropospheric formaldehyde levels infer ambient formaldehyde-induced brain diseases and global burden in China, 2013–2019. Sci. Total Environ. 2023, 883, 163553. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Han, C.; Qiang, M.; Wang, W.; Lv, J.; Zhang, S.; Luo, W.; Li, H.; Luo, H.; Zhou, J.; et al. Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiol. Aging 2015, 36, 100–110. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, P.S. Endogenous–Exogenous Chemicals with Neurotoxic Potential. Proceedings 2024, 102, 22. https://doi.org/10.3390/proceedings2024102022
Spencer PS. Endogenous–Exogenous Chemicals with Neurotoxic Potential. Proceedings. 2024; 102(1):22. https://doi.org/10.3390/proceedings2024102022
Chicago/Turabian StyleSpencer, Peter S. 2024. "Endogenous–Exogenous Chemicals with Neurotoxic Potential" Proceedings 102, no. 1: 22. https://doi.org/10.3390/proceedings2024102022
APA StyleSpencer, P. S. (2024). Endogenous–Exogenous Chemicals with Neurotoxic Potential. Proceedings, 102(1), 22. https://doi.org/10.3390/proceedings2024102022