The Latest Trends in Recycling Spent Lithium-Ion Batteries †
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shu, X.; Guo, Y.; Yang, W.; Wei, K.; Zhu, G. Life-cycle assessment of the environmental impact of the batteries used in pure electric passenger cars. Energy Rep. 2021, 7, 2302–2315. [Google Scholar] [CrossRef]
- Available online: https://www.cire.pl/artykuly/elektromobilnosc-serwis-informacyjny-cire-24-kraj/recykling-baterii-moze-byc-nowa-specjalnoscia-polski (accessed on 30 May 2024).
- Chagnes, A.; Pospiech, B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol. 2013, 88, 1191–1199. [Google Scholar] [CrossRef]
- Gza, K.; Pospiech, B.; Gęga, J. Future technologies for recycling spent lithium-ion batteries(LiBs) from electric vehicles—Overview of latest trends and challenges. Energies 2023, 16, 5777. [Google Scholar] [CrossRef]
- Pospiech, B.; Kujawski, W. Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation. Rev. Chem. Eng. 2015, 31, 179–191. [Google Scholar] [CrossRef]
- Dietz, M.L.; Stepinski, D.C. A ternary mechanism for the facilitated transfer of metal ions into room-temperature ionic liquids(RTILs):Implications for the “Greenness” of RTILs as extraction solvents. Green Chem. 2005, 7, 747–750. [Google Scholar] [CrossRef]
- Stepinski, D.C.; Jensen, M.P.; Dzielawa, J.A.; Dietz, M.L. Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids. Green Chem. 2005, 7, 151–158. [Google Scholar] [CrossRef]
- Visser, A.E.; Swatloski, R.P.; Griffin, S.T.; Hartman, D.H.; Rogers, R.D. Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep. Sci. Technol. 2001, 36, 785–804. [Google Scholar] [CrossRef]
- Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Feasibility of ionic liquids as alternatives separation media for industrial solvent extraction processes. Ind. Eng. Chem. Res. 2005, 44, 4368–4372. [Google Scholar] [CrossRef]
- Shimojo, K.; Goto, M. Solvent extraction and stripping of silver ions in room temperature ionic liquids containing calixarenes. Anal. Chem. 2004, 76, 5039–5044. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.T.; Yang, Z.; Chen, C.J. Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal. Chim. Acta 2003, 488, 183–192. [Google Scholar] [CrossRef]
- Sun, X.; Hu, Y.; He, F.; Chen, B.; Li, D. The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction. Talanta 2010, 81, 1877–1883. [Google Scholar] [CrossRef] [PubMed]
- Turanov, A.N.; Karndashev, V.K.; Baulin, V.E. Effect of ionic liquids on the extraction of rare-earth elements by bidentate neutral organophosphorus compounds from chloride solutions. Russ. J. Inorg. Chem. 2008, 53, 970–975. [Google Scholar] [CrossRef]
- Luo, H.; Dai, S.; Bonnesen, P.V. Solvent extraction of Sr2+ and Cs+ based on room temperature ionic liquids containing monoaza-substituted crown ethers. Anal. Chem. 2004, 76, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M. Extraction of noble metal ions from aqueous solution by ionic liquids. Fluid Phase Equilibria 2012, 319, 30–36. [Google Scholar] [CrossRef]
- Rgel-Rosocka, M.; Wisniewski, M. Selective removal of zinc(II) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101. Hydrometallurgy 2011, 110, 85–90. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Cieszynska, A.; Wisniewski, M. Ekstrakcja cynku(II)wybranymi fosfoniowymi cieczami jonowymi. Przemysł Chem. 2006, 8–9, 651–654. [Google Scholar]
- De Los Rios, A.P.; Hernandez-Fernandez, J.; Alguacil, F.J.; Lozano, L.J. On the use of imidazolium and ammonium-based ionic liquids as green solvents for the selective recovery of Zn(II), Cd(II), Cu(II) and Fe(III) from hydrochloride aqueous solutions. Sep. Purif. Technol. 2012, 97, 150–157. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wisniewski, M. Selective extraction of palladium(II)from hydrochloric acid solutions with phosphonium extractants. Sep. Purif. Technol. 2011, 80, 385–389. [Google Scholar] [CrossRef]
- Rybka, P.; Regel-Rosocka, M. Nickel(II) and cobalt(II) extraction from chloride solutions with quaternary phosphonium salts. Sep. Sci. Technol. 2012, 47, 1296–1302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pospiech, B. The Latest Trends in Recycling Spent Lithium-Ion Batteries. Proceedings 2024, 108, 21. https://doi.org/10.3390/proceedings2024108021
Pospiech B. The Latest Trends in Recycling Spent Lithium-Ion Batteries. Proceedings. 2024; 108(1):21. https://doi.org/10.3390/proceedings2024108021
Chicago/Turabian StylePospiech, Beata. 2024. "The Latest Trends in Recycling Spent Lithium-Ion Batteries" Proceedings 108, no. 1: 21. https://doi.org/10.3390/proceedings2024108021
APA StylePospiech, B. (2024). The Latest Trends in Recycling Spent Lithium-Ion Batteries. Proceedings, 108(1), 21. https://doi.org/10.3390/proceedings2024108021