3D Printed Flowmeter Based on Venturi Effect with Integrated Pressure Sensors †
Abstract
:1. Introduction
2. Measurement Method
3. Measurement Set Up
4. Results
5. Summary
Acknowledgments
References
- Kuo, J.T.W.; Yu, L.; Meng, E. Micromachined Thermal Flow Sensors—A Review. Micromachines 2012, 3, 550–573. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Chen, C.-P.; Chang, C.-M.; Lin, C.-P.; Lin, C.-H. MEMS-based gas flow sensors. Microfluid. Nanofluid. 2009, 6, 333–346. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Qin, L.; Chyu, M.K.; Wang, Q.-M. Theoretical and Experimental Studies of a Surface Acoustic Wave Flow Sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59. [Google Scholar] [CrossRef]
- Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS ONE 2012, 7, e49365. [Google Scholar] [CrossRef] [PubMed]
- Waldbaur, A.; Rapp, H.; Länge, K.; Rapp, B.E. Let there be chip—Towards rapid prototyping of microfluidic devices: One-step manufacturing processes. Anal. Methods 2011, 3, 2681–2716. [Google Scholar] [CrossRef]
- Adamski, K.; Adamski, J.; Dziuban, J.A.; Walczak, R. Inkjet 3D Printed Miniature Water Turbine Energy Harvester-Flow Meter for Distributed Measurement Systems. Proceedings 2017, 1, 578. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K. Inkjet 3D printing of microfluidic structures—On the selection of the printer towards printing your own microfluidic chips. J. Micromech. Microeng. 2015, 25. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K.; Kubicki, W. Inkjet 3D printed chip for capillary gel electrophoresis. Sens. Actuators B Chem. 2018, 261, 474–480. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K.; Lizanets, D. Inkjet 3D printed check microvalve. J. Micromech. Microeng. 2017, 27. [Google Scholar] [CrossRef]
- Krysztof, M.; Grzebyk, T.; Górecka-Drzazga, A.; Adamski, K.; Dziuban, J. Electron optics column for a new MEMS-type transmission electron microscope. Bull. Polish Acad. Sci.-Tech. Sci. 2018, 66, 133–137. [Google Scholar]
- Walczak, R.; Adamski, K.; Kubicki, W. Configurable on-Chip Gel Electrophoresis in Inkjet 3D Printed Microfluidic Modules. Proceedings 2017, 1, 520. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamski, K.; Kawa, B.; Walczak, R. 3D Printed Flowmeter Based on Venturi Effect with Integrated Pressure Sensors. Proceedings 2018, 2, 1509. https://doi.org/10.3390/proceedings2131509
Adamski K, Kawa B, Walczak R. 3D Printed Flowmeter Based on Venturi Effect with Integrated Pressure Sensors. Proceedings. 2018; 2(13):1509. https://doi.org/10.3390/proceedings2131509
Chicago/Turabian StyleAdamski, Krzysztof, Bartosz Kawa, and Rafał Walczak. 2018. "3D Printed Flowmeter Based on Venturi Effect with Integrated Pressure Sensors" Proceedings 2, no. 13: 1509. https://doi.org/10.3390/proceedings2131509
APA StyleAdamski, K., Kawa, B., & Walczak, R. (2018). 3D Printed Flowmeter Based on Venturi Effect with Integrated Pressure Sensors. Proceedings, 2(13), 1509. https://doi.org/10.3390/proceedings2131509