Human Behaviour Analysis through Smartphones †
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Physical Activity Sensing
3.2. Cognitive Sensing
3.3. Emotional Sensing
3.4. Social Sensing
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Conner, M.; Norman, P. Health behaviour: Current issues and challenges. Psychol. Health 2017, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Helbostad, J.L.; Vereijken, B.; Becker, C.; Todd, C.; Taraldsen, K.; Pijnappels, M.; Aminian, K.; Mellone, S. Mobile Health Applications to Promote Active and Healthy Ageing. Sensors 2017, 17, 622. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.H.; Kagan, J.; Lerner, R.M. “Human Behaviour.” Encyclopædia Britannica, Encyclopædia Britannica, Inc. Available online: http://www.britannica.com/topic/human-behavior (accessed on 24 April 2018).
- Silva, B.M.C.; Rodrigues, J.J.P.C.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K. Mobile-health: A review of current state in 2015. J. Biomed. Inf. 2015, 56, 265–272. [Google Scholar] [CrossRef]
- John, D.; Freedson, P. ActiGraph and Actical Physical Activity Monitors. Med. Sci. Sport. Exerc. 2012, 44, S86–S89. [Google Scholar] [CrossRef] [PubMed]
- Buman, M.P.; Hekler, E.B.; Haskell, W.L.; Pruitt, L.; Conway, T.L.; Cain, K.L.; Sallis, J.F.; Saelens, B.E.; Frank, L.D.; King, A.C. Objective light-intensity physical activity associations with rated health in older adults. Am. J. Epidemiol. 2010, 172, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Hekler, E.B.; Buman, M.P.; Grieco, L.; Rosenberger, M.; Winter, S.J.; Haskell, W.; King, A.C. Validation of Physical Activity Tracking via Android Smartphones Compared to ActiGraph Accelerometer: Laboratory-Based and Free-Living Validation Studies. JMIR mHealth uHealth 2015, 3, e36. [Google Scholar] [CrossRef]
- Garcia, E.; Ding, H.; Sarela, A.; Karunanithi, M. Can a mobile phone be used as a pedometer in an outpatient cardiac rehabilitation program? In Proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering, Gold Coast, Australia, 13–15 July 2010; pp. 250–253. [Google Scholar]
- Mladenov, M.; Mock, M. A step counter service for Java-enabled devices using a built-in accelerometer. In Proceedings of the 1st International Workshop on Context-Aware Middleware and Services Affiliated with the 4th International Conference on Communication System Software and Middleware (COMSWARE 2009)- CAMS ’09, Dublin, Ireland, 16 June 2009; p. 1. [Google Scholar]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 2011, 12, 74–82. [Google Scholar] [CrossRef]
- Lau, S.L.; David, K. Movement recognition using the accelerometer in smartphones. In 2010 Future Network and Mobile Summit; IEEE: Piscataway Township, NJ, USA, 2010; pp. 1–9. [Google Scholar]
- Martín, H.; Bernardos, A.M.; Iglesias, J.; Casar, J.R. Activity logging using lightweight classification techniques in mobile devices. Pers. Ubiquitous Comput. 2013, 17, 675–695. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, D.; Li, B.; Guo, B.; Li, S. Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In International Conference on Ubiquitous Intelligence and Computing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6406, pp. 548–562. [Google Scholar]
- Banos, O.; Villalonga, C.; Garcia, R.; Saez, A.; Damas, M.; Holgado-Terriza, J.A.; Lee, S.; Pomares, H.; Rojas, I. Design, implementation and validation of a novel open framework for agile development of mobile health applications. Biomed. Eng. Online 2015, 14, S6. [Google Scholar] [CrossRef]
- Khan, A.M.; Tufail, A.; Khattak, A.M.; Laine, T.H. Activity recognition on smartphones via sensor-fusion and KDA-based SVMs. Int. J. Distrib. Sens. Netw. 2014, 10, 503291. [Google Scholar] [CrossRef]
- Ouchi, K.; Doi, M. Indoor-outdoor activity recognition by a smartphone. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012. [Google Scholar]
- Hur, T.; Bang, J.; Kim, D.; Banos, O.; Lee, S. Smartphone location-independent physical activity recognition based on transportation natural vibration analysis. Sensors 2017, 17, 931. [Google Scholar] [CrossRef] [PubMed]
- Banos, O.; Damas, M.; Pomares, H.; Rojas, I. On the use of sensor fusion to reduce the impact of rotational and additive noise in human activity recognition. Sensors 2012, 12, 8039–8054. [Google Scholar] [CrossRef] [PubMed]
- Banos, O.; Toth, M.A.; Damas, M.; Pomares, H.; Rojas, I. Dealing with the effects of sensor displacement in wearable activity recognition. Sensors 2014, 14, 9995–10023. [Google Scholar] [CrossRef]
- Han, M.; Vinh, L.T.; Lee, Y.K.; Lee, S. Comprehensive context recognizer based on multimodal sensors in a smartphone. Sensors 2012, 12, 12588–12605. [Google Scholar] [CrossRef]
- Han, M.; Bang, J.H.; Nugent, C.; McClean, S.; Lee, S. A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors. Sensors 2014, 14, 16181–16195. [Google Scholar] [CrossRef]
- Guiry, J.J.; Karr, C.J.; van de Ven, P.; Nelson, J.; Begale, M. A single vs. multi-sensor approach to enhanced detection of smartphone placement. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3691–3694. [Google Scholar]
- Isho, T.; Tashiro, H.; Usuda, S. Accelerometry-based gait characteristics evaluated using a smartphone and their association with fall risk in people with chronic stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 1305–1311. [Google Scholar] [CrossRef]
- Mazilu, S.; Hardegger, M.; Zhu, Z.; Roggen, D.; Troster, G.; Plotnik, M.; Hausdorff, J.M. Online detection of freezing of gait with smartphones and machine learning techniques. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012; pp. 123–130. [Google Scholar]
- Yamada, M.; Aoyama, T.; Mori, S.; Nishiguchi, S.; Okamoto, K.; Ito, T.; Muto, S.; Ishihara, T.; Yoshitomi, H.; Ito, H. Objective assessment of abnormal gait in patients with rheumatoid arthritis using a smartphone. Rheumatol. Int. 2012, 32, 3869–3874. [Google Scholar] [CrossRef]
- Abbate, S.; Avvenuti, M.; Bonatesta, F.; Cola, G.; Corsini, P.; Vecchio, A. A smartphone-based fall detection system. Pervasive Mob. Comput. 2012, 8, 883–899. [Google Scholar] [CrossRef]
- Dai, J.; Bai, X.; Yang, Z.; Shen, Z.; Xuan, D. Mobile phone-based pervasive fall detection. Pers. Ubiquitous Comput. 2010, 14, 633–643. [Google Scholar] [CrossRef]
- Mehner, S.; Klauck, R.; Koenig, H. Location-independent fall detection with smartphone. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes, Greece, 29–31 May 2013. [Google Scholar]
- Mulcahy, M.K.; Kurkovsky, S. Automatic fall detection using mobile devices. In Proceedings of the 2015 12th International Conference on Information Technology—New Generations, Las Vegas, NV, USA, 13–15 April 2015; pp. 586–588. [Google Scholar]
- Bieber, G.; Koldrack, P.; Sablowski, C.; Peter, C.; Urban, B. Mobile physical activity recognition of stand-up and sit-down transitions for user behavior analysis. In Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments, Samos, Greece, 23–25 June 2010. [Google Scholar]
- Mellone, S.; Tacconi, C.; Chiari, L. Validity of a Smartphone-based instrumented Timed Up and Go. Gait Posture 2012, 36, 163–165. [Google Scholar] [CrossRef]
- Lee, B.C.; Kim, J.; Chen, S.; Sienko, K.H. Cell phone based balance trainer. J. Neuroeng. Rehabil. 2012, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.A.; Amick, R.Z.; Thummar, T.; Rogers, M.E. Validation of measures from the smartphone sway balance application: A pilot study. Int. J. Sports Phys. Ther. 2014, 9, 135–139. [Google Scholar] [PubMed]
- Aung, A.; Wai, P.; Duc, P.D.; Syin, C.; Haihong, Z. iBEST: Intelligent Balance Assessment and Stability Training System using Smartphone. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3683–3686. [Google Scholar]
- DeMasi, O.; Feygin, S.; Dembo, A.; Aguilera, A.; Recht, B. Well-Being Tracking via Smartphone-Measured Activity and Sleep: Cohort Study. JMIR mHealth uHealth 2017, 5, e137. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.D.; Lin, M.; Mohammod, M.; Yang, X.; Lu, H.; Cardone, G.; Ali, S.; Doryab, A.; Berke, E.; Campbell, A.T.; et al. BeWell: Sensing Sleep, Physical Activities and Social Interactions to Promote Wellbeing. Mob. Netw. Appl. 2014, 19, 345–359. [Google Scholar] [CrossRef]
- Phithakkitnukoon, S.; Horanont, T.; di Lorenzo, G.; Shibasaki, R.; Ratti, C. Activity-aware map: Identifying human daily activity pattern using mobile phone data. Lect. Notes Comput. Sci. 2010, 6219, 14–25. [Google Scholar]
- Pratama, A.R.; Hidayat, R. Smartphone-based Pedestrian Dead Reckoning as an indoor positioning system. In Proceedings of the 2012 International Conference on System Engineering and Technology (ICSET), Bandung, Indonesia, 11–12 September 2012; pp. 1–6. [Google Scholar]
- Tian, Z.; Zhang, Y.; Zhou, M.; Liu, Y. Pedestrian dead reckoning for MARG navigation using a smartphone. EURASIP J. Adv. Signal Process. 2014, 2014, 65. [Google Scholar] [CrossRef]
- Kang, W.; Han, Y. SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization. IEEE Sens. J. 2015, 15, 2906–2916. [Google Scholar] [CrossRef]
- Oliver, N.; Matic, A.; Frias-Martinez, E. Mobile Network Data for Public Health: Opportunities and Challenges. Front. Public Health 2015, 3, 189. [Google Scholar] [CrossRef]
- Gravenhorst, F.; Muaremi, A.; Bardram, J.; Grünerbl, A.; Mayora, O.; Wurzer, G.; Frost, M.; Osmani, V.; Arnrich, B.; Lukowicz, P.; et al. Mobile phones as medical devices in mental disorder treatment: An overview. Pers. Ubiquitous Comput. 2015, 19, 335–353. [Google Scholar] [CrossRef]
- Burns, M.N.; Begale, M.; Duffecy, J.; Gergle, D.; Karr, C.J.; Giangrande, E.; Mohr, D.C. Harnessing Context Sensing to Develop a Mobile Intervention for Depression. J. Med. Internet. Res. 2011, 13, e55. [Google Scholar] [CrossRef]
- Schmidt, C.; Collette, F.; Cajochen, C.; Peigneux, P. A time to think: circadian rhythms in human cognition. Cogn. Neuropsychol. 2007, 24, 755–789. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, H.P.; Dinges, D.F. Sleep, circadian rhythms, and psychomotor vigilance. Clin. Sports Med. 2005, 24, 237–49. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F. An overview of sleepiness and accidents. J. Sleep Res. 1995, 4, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Murnane, E.L.; Matthews, M.; Kay, M.; Kientz, J.A.; Gay, G.; Choudhury, T. Cognitive rhythms: Unobtrusive and continuous sensing of alertness using a mobile phone. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016. [Google Scholar]
- Pijnenborg, G.H.; Withaar, F.K.; Brouwer, W.H.; Timmerman, M.E.; van den Bosch, R.J.; Evans, J.J. The efficacy of SMS text messages to compensate for the effects of cognitive impairments in schizophrenia. Br. J. Clin. Psychol. 2010, 49, 259–274. [Google Scholar] [CrossRef]
- Torous, J.; Kiang, M.V.; Lorme, J.; Onnela, J.P. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Ment. Health 2016, 3, e16. [Google Scholar] [CrossRef]
- Wohlfahrt-Laymann, J.; Hermens, H.; Villalonga, C.; Vollenbroek-Hutten, M.; Banos, O. MobileCogniTracker. J. Ambient Intell. Hum. Comput. 2018, 1868–5145, 1–8. [Google Scholar] [CrossRef]
- Bardram, J.E.; Frost, M.; Szántó, K.; Faurholt-Jepsen, M.; Vinberg, M.; Kessing, L.V. Designing mobile health technology for bipolar disorder: A field trial of the monarca system. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013. [Google Scholar]
- Muaremi, A.; Gravenhorst, F.; Grünerbl, A.; Arnrich, B.; Tröster, G. Assessing Bipolar Episodes Using Speech Cues Derived from Phone Calls. In Pervasive Computing Paradigms for Mental Health; Cipresso, P., Matic, A., Lopez, G., Eds.; Springer: Cham, Switzerland, 2014; pp. 103–114. [Google Scholar]
- Grünerbl, A.; Muaremi, A.; Osmani, V.; Bahle, G.; Öhler, S.; Tröster, G.; Mayora, O.; Haring, C.; Lukowicz, P. Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J. Biomed. Health Inform. 2015, 19, 140–148. [Google Scholar] [CrossRef]
- Vanello, N.; Guidi, A.; Gentili, C.; Werner, S.; Bertschy, G.; Valenza, G.; Lanata, A.; Scilingo, E.P. Speech analysis for mood state characterization in bipolar patients. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 2012, 2104–2107. [Google Scholar]
- Tausczik, Y.R.; Pennebaker, J.W. The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. J. Lang. Soc. Psychol. 2010, 29, 24–54. [Google Scholar] [CrossRef]
- Rutland, J.B.; Sheets, T.; Young, T. Development of a scale to measure problem use of short message service: The SMS Problem Use Diagnostic Questionnaire. Cyberpsychol. Behav. 2007, 10, 841–843. [Google Scholar] [CrossRef]
- Lomranz, J.; Bergman, S.; Eyal, N.; Shmotkin, D. Indoor and outdoor activities of aged women and men as related to depression and well-being. Int. J. Aging Hum. Dev. 1988, 26, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Osmani, V.; Maxhuni, A.; Grünerbl, A.; Lukowicz, P.; Haring, C.; Mayora, O. Monitoring activity of patients with bipolar disorder using smart phones. In Proceedings of the International Conference on Advances in Mobile Computing Multimedia, Vienna, Austria, 2–4 December 2013. [Google Scholar]
- Pielot, M.; Dingler, T.; Pedro, J.S.; Oliver, N. When attention is not scarce—Detecting boredom from mobile phone usage. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015. [Google Scholar]
- Bogomolov, A.; Lepri, B.; Pianesi, F. Happiness Recognition from Mobile Phone Data. In Proceedings of the 2013 International Conference on Social Computing, Alexandria, VA, USA, 8–14 September 2013; pp. 790–795. [Google Scholar]
- Lachmar, E.M.; Wittenborn, A.K.; Bogen, K.W.; McCauley, H.L. MyDepressionLooksLike: Examining Public Discourse About Depression on Twitter. JMIR Ment. Health 2017, 4, e43. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Qi, G.; Huang, J.; Wu, T.; Fu, X. Detecting bursts in sentiment-aware topics from social media. Knowl.-Based Syst. 2018, 141, 44–54. [Google Scholar] [CrossRef]
- Alp, Z.Z.; Öğüdücü, Ş.G. Identifying topical influencers on twitter based on user behavior and network topology. Knowl.-Based Syst. 2018, 141, 211–221. [Google Scholar]
- Frost, M.; Doryab, A.; Faurholt-Jepsen, M.; Kessing, L.V.; Bardram, J.E. Supporting disease insight through data analysis: Refinements of the monarca self-assessment system. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013. [Google Scholar]
- George, L.K.; Blazer, D.G.; Hughes, D.C.; Fowler, N. Social support and the outcome of major depression. Br. J. Psychiatry 1989, 154, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Moturu, S.T.; Khayal, I.; Aharony, N.; Pan, W.; Pentland, A. Using social sensing to understand the links between sleep, mood, and sociability. In Proceedings of the 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011, Boston, MA, USA, 9–11 October 2011; pp. 208–214. [Google Scholar]
- Vieira, M.R.; Frias-Martinez, V.; Oliver, N.; Frias-Martinez, E. Characterizing Dense Urban Areas from Mobile Phone-Call Data: Discovery and Social Dynamics. In Proceedings of the 2010 IEEE Second International Conference on Social Computing, Minneapolis, MN, USA, 20–22 August 2010; pp. 241–248. [Google Scholar]
- Pastor-Escuredo, D.; Morales-Guzmán, A.; Torres-Fernández, Y.; Bauer, J.; Wadhwa, A.; Castro-Correa, C.; Romanoff, L.; Lee, J.G.; Rutherford, A.; Frias-Martinez, V.; et al. Flooding through the lens of mobile phone activity. In Proceedings of the 4th IEEE Global Humanitarian Technology Conference, GHTC 2014, San Jose, CA, USA, 10–13 October 2014; pp. 279–286. [Google Scholar]
Smartphone Sensors | Features | Sensing Modality | Behaviours |
---|---|---|---|
motion (e.g., accelerometer and/or gyroscope) | time-domain (e.g., mean, variance, correlation) frequency-domain (e.g., FFT components) | physical activity | counting steps and/or simple physical activities (e.g., walking, sitting, standing) and/or complicated activities (e.g., shopping, eating, working) and/or gait analysis and/or fall detection and/or sleep duration and/or body balance and/or hand movements |
outdoor location (e.g., GPS) | amount of time spent outdoors, distances travelled, frequency of visited places, regularity of daily habits, etc. | physical & social activity | location detection and movement analysis and/or social interaction/isolation |
indoor location (e.g., Bluetooth, and/or Wi-Fi signals) | the amount and signal strength of visible Wi-Fi or Bluetooth stations | ||
device usage patterns | speed of reaction time | cognitive activity | alertness, attendance, fatigue assessment |
SMS, phone calls, audio and microphone | content, number of ingoing/outgoings calls and texts, etc. | emotional & social activity | emotional states and mood and/or social interaction/isolation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konsolakis, K.; Hermens, H.; Villalonga, C.; Vollenbroek-Hutten, M.; Banos, O. Human Behaviour Analysis through Smartphones. Proceedings 2018, 2, 1243. https://doi.org/10.3390/proceedings2191243
Konsolakis K, Hermens H, Villalonga C, Vollenbroek-Hutten M, Banos O. Human Behaviour Analysis through Smartphones. Proceedings. 2018; 2(19):1243. https://doi.org/10.3390/proceedings2191243
Chicago/Turabian StyleKonsolakis, Kostas, Hermie Hermens, Claudia Villalonga, Miriam Vollenbroek-Hutten, and Oresti Banos. 2018. "Human Behaviour Analysis through Smartphones" Proceedings 2, no. 19: 1243. https://doi.org/10.3390/proceedings2191243
APA StyleKonsolakis, K., Hermens, H., Villalonga, C., Vollenbroek-Hutten, M., & Banos, O. (2018). Human Behaviour Analysis through Smartphones. Proceedings, 2(19), 1243. https://doi.org/10.3390/proceedings2191243