Gene Signatures Research Involved in Cancer Using Machine Learning †
Abstract
:1. Introduction
2. Results
2.1. Conventional Analysis of Differential Gene Expression
2.2. Data Analysis Using Machine Learning
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liñares Blanco, J.; Gestal, M.; Dorado, J.; Fernandez-Lozano, C. Differential Gene Expression Analysis of RNA-seq Data Using Machine Learning for Cancer Research. In Machine Learning Paradigms. Learning and Analytics in Intelligent Systems; Springer: Cham, Switzerland, 2019; pp. 27–65. [Google Scholar]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, D. KEGGREST: Client-side REST access to KEGG. R Package Vers. 2016, 1. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
Gene Name | p-Value |
---|---|
ITGA6 | 2.605237 |
AXIN2 | 4.065388 |
NOS2 | 1.848360 |
MYC | 4.409724 |
TCF7 | 3.930353 |
COL4A3 | 2.205117 |
COL4A4 | 1.548193 |
TCF7L1 | 2.527959 |
PIK3R2 | 6.857479 |
BBC3 | 2.481885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liñares-Blanco, J.; Fernandez-Lozano, C. Gene Signatures Research Involved in Cancer Using Machine Learning. Proceedings 2019, 21, 19. https://doi.org/10.3390/proceedings2019021019
Liñares-Blanco J, Fernandez-Lozano C. Gene Signatures Research Involved in Cancer Using Machine Learning. Proceedings. 2019; 21(1):19. https://doi.org/10.3390/proceedings2019021019
Chicago/Turabian StyleLiñares-Blanco, Jose, and Carlos Fernandez-Lozano. 2019. "Gene Signatures Research Involved in Cancer Using Machine Learning" Proceedings 21, no. 1: 19. https://doi.org/10.3390/proceedings2019021019
APA StyleLiñares-Blanco, J., & Fernandez-Lozano, C. (2019). Gene Signatures Research Involved in Cancer Using Machine Learning. Proceedings, 21(1), 19. https://doi.org/10.3390/proceedings2019021019