Time-Aware Detection Systems †
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashoor, A.S.; Gore, S. Importance of intrusion detection system (IDS). Int. J. Sci. Eng. Res. 2011, 2, 1–4. [Google Scholar]
- Hutchins, E.M.; Cloppert, M.J.; Amin, R.M. Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains. Lead. Issues Inf. Warf. Secur. Res. 2011, 1, 80. [Google Scholar]
- Kaur, H.; Singh, G.; Minhas, J. A review of machine learning based anomaly detection techniques. arXiv 2013, arXiv:1307.7286. [Google Scholar] [CrossRef]
- Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 2015, 18, 1153–1176. [Google Scholar] [CrossRef]
- Chawathe, S.S. Monitoring IoT Networks for Botnet Activity. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018; pp. 1–8. [Google Scholar]
- Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Chinchor, N.; Nancy. MUC-4 evaluation metrics. In Proceedings of the 4th Conference on Message Understanding—MUC4 ’92, McLean, VA, USA, 16–18 June 1992; Association for Computational Linguistics: Morristown, NJ, USA, 1992; p. 22. [Google Scholar] [CrossRef]
- Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. arXiv 2018, arXiv:1802.09089. [Google Scholar]
- Aitken, P.; Claise, B.; Trammell, B. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information; RFC 7011; Internet Engineering Task Force: Fremont, CA, USA, 2013. [Google Scholar] [CrossRef]
- Trammell, B.; Boschi, E. Bidirectional Flow Export Using IP Flow Information Export (IPFIX); Technical Report; Internet Engineering Task Force: Fremont, CA, USA, 2008. [Google Scholar]
Metrics | Chunks | |||||
---|---|---|---|---|---|---|
1–2 | 3 | 4 | 5–9 | 10 | ||
Precision | 0.0 | 1.0 | 0.875 | 0.8452 | 0.8454 | |
RF | Recall | 0.0 | 0.0001 | 0.0004 | 0.8505 | 0.8519 |
F1 | 0.0 | 0.0002 | 0.0009 | 0.8478 | 0.8487 | |
Precision | 0.0 | 1.0 | 0.875 | 0.8452 | 0.8454 | |
J48 | Recall | 0.0 | 0.0001 | 0.0004 | 0.8505 | 0.8519 |
F1 | 0.0 | 0.0002 | 0.0009 | 0.8478 | 0.8487 | |
Precision | 0.0 | 1.0 | 0.8571 | 0.8451 | 0.8454 | |
JRip | Recall | 0.0 | 0.0001 | 0.0004 | 0.8504 | 0.8518 |
F1 | 0.0 | 0.0001 | 0.0007 | 0.8477 | 0.8486 | |
Max | 45 | 68 | 91 | 206 | 229 | |
Number of Packets | Avg | 4.0203 | 6.0442 | 8.0848 | 19.1218 | 22.0911 |
STD | 11.4049 | 17.1423 | 22.9199 | 51.4238 | 57.0210 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vizcaíno, M.; Vigoya, L.; Cacheda, F.; Novoa, F.J. Time-Aware Detection Systems. Proceedings 2019, 21, 39. https://doi.org/10.3390/proceedings2019021039
López-Vizcaíno M, Vigoya L, Cacheda F, Novoa FJ. Time-Aware Detection Systems. Proceedings. 2019; 21(1):39. https://doi.org/10.3390/proceedings2019021039
Chicago/Turabian StyleLópez-Vizcaíno, Manuel, Laura Vigoya, Fidel Cacheda, and Francisco J. Novoa. 2019. "Time-Aware Detection Systems" Proceedings 21, no. 1: 39. https://doi.org/10.3390/proceedings2019021039
APA StyleLópez-Vizcaíno, M., Vigoya, L., Cacheda, F., & Novoa, F. J. (2019). Time-Aware Detection Systems. Proceedings, 21(1), 39. https://doi.org/10.3390/proceedings2019021039