Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal †
Abstract
:1. Introduction
2. Methods
2.1. Raw Material
2.2. Ultrasound-Assisted Extraction and Maceration with Constant Stirring
2.3. Total Phenolic Content
2.4. Antioxidant Capacity
2.5. Phenolic Profile by Capillary Electrophoresis
3. Results and Discussion
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christoforou, E.; Fokaides, P.A. A review of olive mill solid wastes to energy utilization techniques. Waste Manag. 2016, 49, 346–363. [Google Scholar] [CrossRef] [PubMed]
- AICA—Agencia de Información y Control Alimentarios. Available online: https://www.aica.gob.es/ (accessed on 15 October 2020).
- FAOSTAST. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 October 2020).
- Contreras, M.d.M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Gómez-Cruz, I.; Romero, I.; Gullón, B.; Ruiz, E.; Brnčićc, M.; Castro, E. Ultrasound-assisted extraction as a first step in a biorefinery strategy for valorisation of extracted olive pomace. Energies 2019, 12, 2679. [Google Scholar] [CrossRef]
- Picó, Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Cara, C.; Romero, I.; Castro, E.; Gullón, B. Valorisation of exhausted olive pomace by an eco-friendly solvent extraction process of natural antioxidants. Antioxidants 2020, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; NREL/TP-510-42623; National Renewable Energy Laboratory: Golden, CO, USA, 2006. [Google Scholar]
- Singleton, V.L.; Rossi, S.A. Colorimetric of total phenolics with phosphomolibic Phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Manzanares, P.; Ballesteros, I.; Negro, M.J.; González, A.; Oliva, J.M.; Ballesteros, M. Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renew. Energy 2020, 145, 1235–1245. [Google Scholar] [CrossRef]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Roseiro, L.B.; Tavares, C.S.; Roseiro, J.C.; Rauter, A.P. Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): Optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind. Crops Prod. 2013, 44, 119–126. [Google Scholar] [CrossRef]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EU). No 1018/2013 of 23 October 2013. Amending Regulation (EU) No 432/2012 establishing a list of permitted health claims made on foods other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2013, 56, 43–45. Available online: http://eur-lex.europa.eu/pri/en/oj/dat/2003/l_285/l_28520031101en00330037.pdf (accessed on 10 October 2020).
- Dominique, T.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, e04728. [Google Scholar] [CrossRef]
Extraction Method | Solvent | Time (min) | Temperature (°C) | Solids (%) |
---|---|---|---|---|
Ultrasound-assisted extraction | Water | 30 | 30 | 10 |
Ultrasound-assisted extraction | 70% acetone | 30 | 30 | 10 |
Maceration | Water | 90 | 85 | 10 |
Extraction Method | Solvent | Sample | TPC g GAE/L | DPPH g TE/L | ABTS g TE/L |
---|---|---|---|---|---|
Ultrasound-assisted extraction | Water | Extract 1 | 1.37 ± 0.01 | 1.38 ± 0.09 | 3.43 ± 0.05 |
Extract 2 | 1.01 ± 0.06 | 0.98 ± 0.05 | 1.50 ± 0.12 | ||
Extract 3 | 0.50 ± 0.03 | 0.50 ± 0.01 | 0.99 ± 0.05 | ||
Mixture | 0.96 ± 0.03 | 0.98 ± 0.01 | 1.94 ± 0.01 | ||
Ultrasound-assisted extraction | 70% acetone | Extract 1 | 1.28 ± 0.03 | 1.54 ± 0.01 | 3.43 ± 0.04 |
Extract 2 | 0.83 ± 0.09 | 0.90 ± 0.03 | 1.91 ± 0.05 | ||
Extract 3 | 0.77 ± 0.00 | 0.55 ± 0.02 | 0.83 ± 0.11 | ||
Mixture | 0.97 ± 0.01 | 1.00 ± 0.07 | 2.04 ± 0.03 | ||
Maceration | Water | Extract | 4.22 ± 0.1 | 3.04 ± 0.27 | 6.77 ± 0.47 |
Extraction Method | Solvent | TPC (mg GAE/g Extract) | DPPH (mg TE/g Extract) | ABTS (mg TE/g Extract) |
---|---|---|---|---|
UAE | Water | 74.23 ± 4.57 | 136.73 ± 3.25 | 159.35 ± 0.00 |
UAE | 70% Acetone | 95.51 ± 5.29 | 157.08 ± 8.30 | 388.14 ± 9.91 |
Maceration | Water | 66.11 ± 2.62 | 63.58 ± 0.86 | 124.72 ± 10.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cruz, I.; Romero, I.; Contreras, M.d.M.; Padilla-Rascón, C.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B. Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal. Proceedings 2021, 70, 10. https://doi.org/10.3390/foods_2020-07612
Gómez-Cruz I, Romero I, Contreras MdM, Padilla-Rascón C, Carvalheiro F, Duarte LC, Roseiro LB. Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal. Proceedings. 2021; 70(1):10. https://doi.org/10.3390/foods_2020-07612
Chicago/Turabian StyleGómez-Cruz, Irene, Inmaculada Romero, María del Mar Contreras, Carmen Padilla-Rascón, Florbela Carvalheiro, Luis C. Duarte, and Luisa B. Roseiro. 2021. "Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal" Proceedings 70, no. 1: 10. https://doi.org/10.3390/foods_2020-07612
APA StyleGómez-Cruz, I., Romero, I., Contreras, M. d. M., Padilla-Rascón, C., Carvalheiro, F., Duarte, L. C., & Roseiro, L. B. (2021). Exhausted Olive Pomace Phenolic-Rich Extracts Obtention: A First Step for a Biorefinery Scheme Proposal. Proceedings, 70(1), 10. https://doi.org/10.3390/foods_2020-07612