Emerging Nanomaterial Applications for Food Packaging and Preservation: Safety Issues and Risk Assessment †
Abstract
:1. Introduction
2. Classification of Nanomaterials and Molecular Basis of Application
2.1. Nanoparticles
2.2. Nanocomposites
2.3. Nanoemulsions
2.4. Nanoclays
2.5. Nanosensors
2.6. Nanostructures
3. Nanomaterials and Active and Intelligent Food Packaging Applications
3.1. Active Packaging
3.2. Intelligent (“Smart”) Packaging
4. Edible Coatings and Films in Food Packaging
5. Regulations and Safety Issues: Risk Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agriopoulou, S. Nanotechnology in food packaging. EC Nutr. 2016, 42, 118–142. [Google Scholar]
- Adeyeye, S.A.O.; Fayemi, O.E. Nanotechnology and food processing: Between innovations and consumer safety. J. Culin. Sci. Technol. 2019, 17, 435–452. [Google Scholar] [CrossRef]
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Vignesh, K.; Anusuya, T.; Kalaivani, T.; Ramachandran, C.; Sudha Rani, R.; Rubab, M.; Khan, I.; Elahi, F.; Deog-Hwan, O.; et al. Application of nanoparticles in food preservation and food processing. J. Food Hyg. Saf. 2019, 34, 317–324. [Google Scholar]
- Jafarizadeh-Malmiri, H.; Sayyar, Z.; Anarjian, N.; Berenjian, A. Challenges for nanibiotechnology. In Nanibiotechnology in Food: Concepts, Applications and Perrpectives; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Potočnik, J. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off. J. Eur. Union 2011, 275, 38–40. [Google Scholar]
- Patel, A.; Patra, F.; Shah, N.; Khedkar, C. Application of Nanotechnology in the Food Industry: Present Status and Future Prospects. In Impact of Nanoscience in the Food Industry; Elsevier Inc.: Cambridge, MA, USA, 2018; pp. 1–27. [Google Scholar]
- Shahbazi, Y.; Shavisi, N. Current advancements in applications of chitosan based nano-metal oxides as food preservative materials. Nanomed. Res. J. 2019, 4, 122–129. [Google Scholar]
- Mei, L.; Wang, Q. Advances in using nanotechnology structuring approaches for improving food packaging. Annu. Rev. Food Sci. Technol. 2020, 11, 339–364. [Google Scholar] [CrossRef]
- Dos Santos, C.A.; Ingle, A.P.; Rai, M. The emerging role of metallic nanoparticles in food. Appl. Microbiol. Biotechnol. 2020, 104, 2373–2383. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Wang, J.; Gardner, D.J.; Tajvidi, M. Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packag. Shelf Life 2020, 23, 100464. [Google Scholar] [CrossRef]
- Ramos, O.L.; Pereira, R.N.; Cerqueira, M.A.; Martins, J.R.; Teixeira, J.A.; Malcata, F.X.; Vicente, A.A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Elsevier Inc.: Cambridge, MA, USA, 2018; pp. 271–306. [Google Scholar]
- Din, M.I.; Ghaffar, T.; Najeeb, J.; Hussain, Z.; Zahid, H. Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Addit. Contam. Part A 2020, 37, 665–680. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Jagadish, K.; Shiralgi, Y.; Chandrashekar, B.N.; Dhananjaya, B.L.; Srikantaswamy, S. Ecofriendly Synthesis of Metal/Metal Oxide Nanoparticles and Their Application in Food Packaging and Food Preservation. In Impact of Nanoscience in the Food Industry; Elsevier Inc.: Cambridge, MA, USA, 2018; pp. 197–216. [Google Scholar]
- Vinci, G.; Rapa, M. Noble metal nanoparticles applications: Recent trends in food control. Bioengineering 2019, 6, 10. [Google Scholar] [CrossRef]
- Xin, Q.; Shah, H.; Nawaz, A.; Xie, W.; Akram, M.Z.; Batool, A.; Tian, L.; Jan, S.U.; Boddula, R.; Guo, B.; et al. Antibacterial carbon-based nanomaterials. Adv. Mater. 2019, 31, 1–15. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Huang, X.; Shi, X.; Zhan, Y.; Fan, G.; Pan, S.; Tian, J.; Deng, H.; Du, Y. Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr. Polym. 2015, 133, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Raafat, D.; Sahl, H.G. Chitosan and its antimicrobial potential-a critical literature survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef]
- Rouf, T.B.; Kokini, J.L. Natural biopolymer-based nanocomposite films for packaging applications. In Bionanocomposites for Packaging Applications; Springer: New York, NY, USA, 2018; pp. 149–177. [Google Scholar]
- Marra, A.; Silvestre, C.; Duraccio, D.; Cimmino, S. Polylactic acid/zinc oxide biocomposite films for food packaging application. Int. J. Biol. Macromol. 2016, 88, 254–262. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits andvegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol. 2020, 152, 154–170. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Nanostructured wmulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends Food Sci. Technol. 2017, 60, 12–22. [Google Scholar] [CrossRef]
- Eleftheriadou, M.; Pyrgiotakis, G.; Demokritou, P. Nanotechnology to the rescue: Using nano-enabled approaches in microbiological food safety and quality. Curr. Opin. Biotechnol. 2017, 44, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Ludueña, L.N.; Alvarez, V.A.; Vazquez, A. Processing and microstructure of PCL/clay nanocomposites. Mater. Sci. Eng. A 2007, 460, 121–129. [Google Scholar] [CrossRef]
- Berekaa, M.M. Nanotechnology in food industry; Advances in food Processing, packaging and food safety. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 345–357. [Google Scholar]
- Pathakoti, K.; Manubolu, M.; Hwang, H.M. Nanostructures: Current uses and future applications in food science. J. Food Drug Anal. 2017, 25, 245–253. [Google Scholar] [CrossRef]
- Lopes, N.A.; Brandelli, A. Nanostructures for delivery of natural antimicrobials in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 2202–2212. [Google Scholar] [CrossRef]
- Nikoleli, G.-P.; Nikolelis, D.P.; Siontorou, C.G.; Karapetis, S.; Varzakas, T. Novel Biosensors for the Rapid Detection of Toxicants in Foods. In Advances in Food and Nutrition Research; Elsevier Inc.: Cambridge, MA, USA, 2018; pp. 57–102. [Google Scholar]
- Agriopoulou, S. Active packaging for food applications. EC Nutr. 2016, 62, 86–87. [Google Scholar]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef]
- Kumar, S.; Shukla, A.; Baul, P.P.; Mitra, A.; Halder, D. Biodegradable hybrid manocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life 2018, 16, 178–184. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Cao, Y.; Lan, T.; Chen, H.; Qin, Y. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 2017, 7, 207. [Google Scholar] [CrossRef]
- Kaur, M.; Kalia, A.; Thakur, A. Effect of biodegradable chitosan–rice-starch nanocomposite films on post-harvest quality of stored peach fruit. Starch/Staerke 2017, 69, 1600208. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Mohammadian, E.; Mcclements, D.J. Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chem. 2020, 322, 126782. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Li, X.; Zhou, W. Safety assessment of nanocomposite for food packaging application. Trends Food Sci. Technol. 2015, 45, 187–199. [Google Scholar] [CrossRef]
- Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.J.; Jacob, H.; Auras, R. Active chicken meat packaging based on polylactide films and bimetallic Ag–Cu Nanoparticles and Essential Oil. J. Food Sci. 2018, 83, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.V.; Azevedo, V.M.; Santos, T.A.; Pola, C.C.; Lara, B.R.B.; Borges, S.V.; Soares, N.F.F.; Medeiros, É.A.A.; Sarantópoulous, C. Effect of active films incorporated with montmorillonite clay and α-tocopherol: Potential of nanoparticle migration and reduction of lipid oxidation in salmon. Packag. Technol. Sci. 2019, 32, 39–47. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life 2017, 11, 106–114. [Google Scholar] [CrossRef]
- Morsy, M.K.; Khalaf, H.H.; Sharoba, A.M.; El-Tanahi, H.H.; Cutter, C.N. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci. 2014, 79, M675–M684. [Google Scholar] [CrossRef]
- Sani, M.A.; Ehsani, A.; Hashemi, M. Whey protein isolate/cellulose manofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int. J. Food Microbiol. 2017, 251, 8–14. [Google Scholar] [CrossRef]
- De Francisco, E.V.; García-Estepa, R.M. Nanotechnology in the agrofood industry. J. Food Eng. 2018, 238, 1–11. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-hindi, R. Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: A review. Food Chem. 2020, 310, 125915. [Google Scholar] [CrossRef]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef]
- Flores-López, M.L.; Cerqueira, M.A.; De Rodríguez, D.J.; Vicente, A.A. Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and negetables. Food Eng. Rev. 2016, 8, 292–305. [Google Scholar] [CrossRef]
- Cortez-Vega, W.R.; Pizato, S.; De Souza, J.T.A.; Prentice, C. Using edible coatings from whitemouth croaker (Micropogonias furnieri) proteini solate and organo-clay nanocomposite for improve the conservation properties of fresh-cut ‘Formosa’ papaya. Innov. Food Sci. Emerg. Technol. 2014, 22, 197–202. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Singh, P. Nanotechnology in food preservation. Food Sci. Res. J. 2018, 9, 435–441. [Google Scholar] [CrossRef]
- Gallocchio, F.; Belluco, S.; Ricci, A. Nanotechnology and food: Brief overview of the current scenario. Procedia Food Sci. 2015, 5, 85–88. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2998 on Food Additives. Off. J. Eur. Union 2008, L354, 16–33. [Google Scholar]
- European Commission. Regulation (EU) 2015/2283 of the European parliament and of the Council of 25 November 2015 on novel foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, L327, 1–22. [Google Scholar]
- EFSA (European Food Safety Authority); Scientific Committee; Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16, 5327. [Google Scholar]
- Rovera, C.; Ghaani, M.; Farris, S. Nano-inspired oxygen barrier coatings for food packaging applications: An overview. Trends Food Sci. Technol. 2020, 97, 210–220. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent developments in food packaging based on nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef]
- Naseer, B.; Srivastava, G.; Qadri, O.S.; Faridi, S.A.; Islam, R.U.; Younis, K. Importance and health hazards of nanoparticles used in the food industry. Nanotechnol. Rev. 2018, 7, 623–641. [Google Scholar] [CrossRef]
- Youssef, A.M. Polymer nanocomposites as a new trend for packaging applications. Polym. Plast. Technol. Eng. 2013, 52, 635–660. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag. Shelf Life 2016, 8, 63–70. [Google Scholar] [CrossRef]
Food Matrix | Category | Nanomaterials | Effect | Reference |
---|---|---|---|---|
Grapes | Active food packaging | Nanocomposites of chitosan/gelatin and silver nanoparticles | Extended the shelf life for two weeks | [34] |
Fresh-cut apples | Active food packaging | Polylactic acid film incorporated with ZnO nanoparticle | Maintained the quality for two weeks | [35] |
Peaches | Biodegradable packaging films | Chitosan rice starch/nano-ZnO nanocomposites | Controlled the microbial growth and spoilage | [36] |
Lamb meat | Active films | Cellulose nanofiber/whey protein/TiO2 nanoparticles and rosemary essential oil | Reduced microbial growth, extended the shelf life for six to 15 days | [37] |
Fruits and vegetables | Active food packaging | Silver nanoparticles | Absorption and decomposition of ethylene emitted | [38] |
Chicken meat | Active food packaging | Polylactide films and bimetallic Ag-Cu nanoparticles and essential oil | Maximum antibacterial action during 21 days at 4 °C | [39] |
Salmon | Active films | Chitosan/montmorillonite/ α-tocopherol film | Inhibition of oxidation reactions | [40] |
Bread | Active food packaging | Carboxymethyl cellulose-chitosan-ZnO NP nanocomposite | Extended the shelf life by 15 days | [41] |
Meat and poultry products | Active food packaging | Essential oils and nanoparticles in pullulan films | Controlled foodborne pathogens | [42] |
Lamb meat | Active food packaging | Nanocomposite films containing TiO2 nanoparticles and rosemary essential oil | Extended the shelf life by 12–15 days | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agriopoulou, S.; Stamatelopoulou, E.; Skiada, V.; Tsarouhas, P.; Varzakas, T. Emerging Nanomaterial Applications for Food Packaging and Preservation: Safety Issues and Risk Assessment. Proceedings 2021, 70, 7. https://doi.org/10.3390/foods_2020-07747
Agriopoulou S, Stamatelopoulou E, Skiada V, Tsarouhas P, Varzakas T. Emerging Nanomaterial Applications for Food Packaging and Preservation: Safety Issues and Risk Assessment. Proceedings. 2021; 70(1):7. https://doi.org/10.3390/foods_2020-07747
Chicago/Turabian StyleAgriopoulou, Sofia, Eygenia Stamatelopoulou, Vasiliki Skiada, Panagiotis Tsarouhas, and Theodoros Varzakas. 2021. "Emerging Nanomaterial Applications for Food Packaging and Preservation: Safety Issues and Risk Assessment" Proceedings 70, no. 1: 7. https://doi.org/10.3390/foods_2020-07747
APA StyleAgriopoulou, S., Stamatelopoulou, E., Skiada, V., Tsarouhas, P., & Varzakas, T. (2021). Emerging Nanomaterial Applications for Food Packaging and Preservation: Safety Issues and Risk Assessment. Proceedings, 70(1), 7. https://doi.org/10.3390/foods_2020-07747