Next Article in Journal
Perception and Knowledge of Disaster Risks and Preparedness: The Case of the City of Mohammedia, Morocco
Previous Article in Journal
Embedded Sensing System for Wireless Sleep Apnea Monitoring
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Selective Detection of Toxic Gases by Arrays of Single-Layer Graphene Sensors Functionalized with Nanolayers of Different Oxides †

Institute of Physics, University of Tartu, 50411 Tartu, Estonia
*
Author to whom correspondence should be addressed.
Presented at the XXXV EUROSENSORS Conference, Lecce, Italy, 10–13 September 2023.
Proceedings 2024, 97(1), 165; https://doi.org/10.3390/proceedings2024097165
Published: 8 April 2024
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)

Abstract

:
Graphene provides an ideal platform for chemiresistive gas sensors as the material is fully exposed to the surrounding environment. For practical use in an ambient atmosphere, its sensitivity and selectivity should be evoked by functionalization by defects and dopants or by decoration with nanophases of metals or metal oxides. Here, we demonstrate a few successful cases of selectivity enhancement by functionalizing the graphene with different oxide layers and applying machine learning to the resulting sensor array.

1. Introduction

Chemiresistive graphene gas sensors are appealing for e-nose applications where their easy production and miniaturization potential can be exploited. Relevant use cases include monitoring indoor and outdoor air quality, performing medical self-diagnosis by breath analysis, and controlling industrial processes. However, for effective use in practical sensors, the sensing properties of graphene have to be improved and controllably modified. We have shown nearly a 100 times enhancement of graphene’s gas sensitivity as well as improved selectivity through functionalization by pulsed laser deposition [1,2]. In this work, we demonstrate the modification of graphene with different metal oxides to controllably induce partial selectivity toward the harmful gases NH3, H2S, NO2, and O3. Selected combinations of these sensors were integrated into arrays, whereby machine learning applied to the output signal pattern of each array allowed the successful differentiation of various gases and their mixtures.

2. Materials and Methods

Chemically vapor-deposited single-layer graphene was transferred onto Si/SiO2 electrode substrates (inset in Figure 1) or special CMOS sensor substrates with built-in microheaters. A KrF excimer laser was used to deposit thin oxide layers on top of the graphene from respective ceramic targets [1]. The substrate temperature, background gas type and pressure, and the thickness of the functionalizing layer were optimized for the best performance of the sensors.

3. Discussion

Figure 1a shows the responses of the individual sensors in an array for the simultaneous detection of NO2 and NH3 gases. The functionalizing materials were chosen to achieve partial selectivity of the individual sensor, either toward NO2 (TiN, HfO2) or NH3 (V2O5, SnO2). For machine learning studies, an extended (>50 h) gas sensing experiment was carried out, where NO2 and NH3 were simultaneously present and their concentrations in synthetic air were randomly (but gradually) changing within 25–390 ppb and 4.5–80 ppm, respectively. Simple artificial neural networks (containing a few neurons in a single hidden layer) applied to the sensor array containing three of the most stable sensors could reliably distinguish and quantify NO2 and NH3 in a mixture over a period of tens of hours, maintaining the mean relative error ≤14%.
Figure 1b shows the responses of the individual sensors in another array tailored for differentiation between O3 and NO2 gases. Although all the tested materials showed selectivity toward O3, functionalizing materials were selected to exhibit different response ratios to O3 and NO2 gases. During 72 h, the sensors were exposed to randomly generated concentration cycles of 30 ppb NO2, 30 ppb O3, 60 ppb NO2, 60 ppb O3, and 30 ppb NO2 + 30 ppb O3 in synthetic air. Various properties of the dynamic responses (amplitude, response rate, and recovery rate) were considered features for machine learning, enabling clearly distinguishing these five gas compositions with an accuracy of ~94%.

Author Contributions

Conceptualization, R.J. and M.K.; methodology, M.L., M.K. and V.K.; validation, M.K.; formal analysis, M.K. and M.L.; investigation, M.K. and M.L.; resources R.J.; data curation, M.K. and M.L.; writing—original draft preparation, M.K.; writing—review and editing, I.R., V.K. and R.J.; visualization, M.K.; supervision, R.J.; project administration, R.J.; funding acquisition, R.J. All authors have read and agreed to the published version of the manuscript.

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Graphene Flagship grant agreement No 881603 and was supported by the Estonian Research Council grant (PRG1580).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors are grateful to Tea Avarmaa for the fabrication of ceramic targets and Tauno Kahro for the graphene transfer onto substrates. We also thank Prashanth Makaram (Infineon Technologies AG) and Amaia Zurutuza (Graphenea) for providing sensor substrates and high-quality single-layer graphene.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Kodu, M.; Berholts, A.; Kahro, T.; Eriksson, J.; Yakimova, R.; Avarmaa, T.; Renge, I.; Alles, H.; Jaaniso, R. Graphene-Based Ammonia Sensors Functionalised with Sub-Monolayer V2O5: A Comparative Study of Chemical Vapour Deposited and Epitaxial Graphene. Sensors 2018, 19, 951. [Google Scholar] [CrossRef] [PubMed]
  2. Lind, M.; Kiisk, V.; Kodu, M.; Kahro, T.; Renge, I.; Avarmaa, T.; Makaram, P.; Zurutuza, A.; Jaaniso, R. Semiquantitative Classification of Two Oxidizing Gases with Graphene-Based Gas Sensors. Chemosensors 2022, 10, 68. [Google Scholar] [CrossRef]
Figure 1. (a) Responses of an array (inset) of graphene sensors functionalized with different PLD films for differentiating NH3 and NO2 gases. Measured at RT under UV light excitation. (b) Responses of an array of graphene sensors functionalized with different PLD films for differentiating O3 and NO2 gases. The inset shows clustering of the data points in the 2D feature space of the response amplitudes.
Figure 1. (a) Responses of an array (inset) of graphene sensors functionalized with different PLD films for differentiating NH3 and NO2 gases. Measured at RT under UV light excitation. (b) Responses of an array of graphene sensors functionalized with different PLD films for differentiating O3 and NO2 gases. The inset shows clustering of the data points in the 2D feature space of the response amplitudes.
Proceedings 97 00165 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kodu, M.; Lind, M.; Kiisk, V.; Renge, I.; Jaaniso, R. Selective Detection of Toxic Gases by Arrays of Single-Layer Graphene Sensors Functionalized with Nanolayers of Different Oxides. Proceedings 2024, 97, 165. https://doi.org/10.3390/proceedings2024097165

AMA Style

Kodu M, Lind M, Kiisk V, Renge I, Jaaniso R. Selective Detection of Toxic Gases by Arrays of Single-Layer Graphene Sensors Functionalized with Nanolayers of Different Oxides. Proceedings. 2024; 97(1):165. https://doi.org/10.3390/proceedings2024097165

Chicago/Turabian Style

Kodu, Margus, Martin Lind, Valter Kiisk, Indrek Renge, and Raivo Jaaniso. 2024. "Selective Detection of Toxic Gases by Arrays of Single-Layer Graphene Sensors Functionalized with Nanolayers of Different Oxides" Proceedings 97, no. 1: 165. https://doi.org/10.3390/proceedings2024097165

APA Style

Kodu, M., Lind, M., Kiisk, V., Renge, I., & Jaaniso, R. (2024). Selective Detection of Toxic Gases by Arrays of Single-Layer Graphene Sensors Functionalized with Nanolayers of Different Oxides. Proceedings, 97(1), 165. https://doi.org/10.3390/proceedings2024097165

Article Metrics

Back to TopTop