Leveraging Unmanned Aerial Vehicle Technologies to Facilitate Precision Water Management in Smallholder Farms: A Scoping Review and Bibliometric Analysis
Abstract
:1. Introduction
Drone Applications in Precision Agriculture
- Conduct a scoping literature review on UAV-based RS techniques to facilitate precision water management within smallholder farms.
- Identify significant journals, publications, authors, and nations that have made notable contributions using UAVs in ET estimation and crop water stress detection.
- Describe UAV-based approaches to monitor crop water use and aid PA.
- Use co-citation analysis to group publications according to their semantic similarity, identify thematic areas, and map studies’ main “intellectual structure.”
- Identify data analytic methods used to support the estimation of ET and detection of crop water stress and analyse these results within the context of smallholder farming.
2. Materials and Methods
2.1. Literature Search
- The full-length article must be peer-reviewed, published in English, easily accessible, and readily available.
- The study or review should specifically address the use of UAV technology for estimating ET or detecting crop water stress within the context of PA.
2.2. Data Analysis
3. Results
3.1. Fundamental Statistical Data
3.2. Distribution Characteristics of Leading Research Countries
3.3. Influential Authors and Citation Analysis
3.4. Influential Academic Journals
3.5. The Frequency, Growth, and Co-Occurrence of Keywords
3.6. Visualising Thematic Clusters in Keyword Co-Occurrence Networks
4. Discussion
4.1. Advances in Thermal Remote Sensing
4.2. Practical UAV Solutions for Small-Scale Farmers
4.3. Energy Balance Models for ET Estimation
4.4. VI Methods for ET Estimation
4.5. The Role of CWSI in Water Management
4.6. Utilisation of the Water Deficit Index (WDI) for Crop Stress Assessment
4.7. The Role of Machine Learning in ET and Water Stress Assessment
4.8. Future Directions and Research Gaps
4.9. Challenges and Opportunities
- Cost and affordability: the price of UAV technology might be a considerable obstacle, particularly for small-scale farms or enterprises, due to the initial outlay costs and infrastructure requirements involved in obtaining and maintaining the equipment. Fortunately, as UAV technology advances, new camera designs are being introduced, costs are decreasing, image processing techniques are improving, and more experiments are being conducted on UAV-based RS for agricultural purposes. In addition, the initial outlay is also offset by the potential for repeat flights, resulting in more frequent datasets and reduced labour and resource expenses.
- Technical literacy and information accessibility: insufficient technical literacy among smallholder farmers may hinder their comprehension, operation, and maintenance of drone technology. Moreover, inequities in accessing information and extension services might lead to unequal dissemination of knowledge on the advantages and uses of UAV technology. Therefore, smallholder farmers may exhibit risk aversion and be reluctant to invest in new technology without compelling information about their benefits, hindering the pace at which it is adopted. Nevertheless, collaboration between the public and private sectors can be established through partnerships with non-governmental organisations with a local presence, such as agricultural extension workers. These partnerships can provide practical training to farmers and enhance their technological skills.
- Limited infrastructure: inadequate infrastructure might impede the implementation and use of UAVs in rural regions where many smallholder farms are situated. These factors include substandard road networks, insufficient electrical supply, and no charging facilities. Subsequently, governmental organisations should ensure capacity development by equipping the relevant farmers with the necessary tools to operate these technologies.
- Data-intensive methods: in small-scale farming, it is anticipated that the UAV will collect most of the data. Nevertheless, several techniques outlined in the literature rely on high-quality in situ measurements to develop and verify the models for predicting crucial variables. Hence, more research is necessary regarding UAV-based methodologies, including all the required data acquisition to provide the desired outcome.
- Research into practical alternatives: the most frequently used VIs rely on multispectral cameras to detect crop water stress. Furthermore, the thermal sensor attachment is widespread in several investigations. However, as previously stated, an RGB sensor on an affordable UAV might be the most feasible choice for small-scale farmers interested in irrigation applications. Nevertheless, a few investigations have shown the sensor’s capacity in this aspect. Hence, further research using the RBG sensor and cutting-edge methodologies is necessary to decrease operating expenses.
- Computational resources: processing, disseminating, and displaying UAV data require considerable computational capacity. Potential users may need supplementary resources or new skills to manage the substantial amounts of data associated with UAVs effectively. However, geospatial cloud computing platforms, such as GEE, have significantly transformed how geospatial data are handled and processed. These systems offer several advantages over conventional approaches by integrating ML techniques. Furthermore, this platform provides access to sophisticated computational capabilities for handling large volumes of geographical data and warrants further investigation.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamara, A.; Conteh, A.R.; Rhodes, E.; Cooke, R. The relevance of smallholder farming to African agricultural growth and development. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14043–14065. [Google Scholar] [CrossRef]
- Lowder, S.; Skoet, J.; Singh, S. What do we Really Know about the Number and Distribution of Farms and Family Farms in the World? Background Paper for the State of Food and Agriculture 2014. ESA Working Paper No. 14-02. Available online: https://ageconsearch.umn.edu/record/288983/?v=pdf (accessed on 10 August 2023).
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop type and land cover mapping in northern Malawi using the integration of Sentinel-1, Sentinel-2, and PlanetScope satellite data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Nhamo, L.; Magidi, J.; Nyamugama, A.; Clulow, A.D.; Sibanda, M.; Chimonyo, V.G.P.; Mabhaudhi, T. Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture 2020, 10, 256. [Google Scholar] [CrossRef]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Odindi, J.; Mutanga, O.; Naiken, V.; Chimonyo, V.G.P.; Mabhaudhi, T. Estimation of maize foliar temperature and stomatal conductance as indicators of water stress based on optical and thermal imagery acquired using an unmanned aerial vehicle (UAV) platform. Drones 2022, 6, 169. [Google Scholar] [CrossRef]
- Pitman, W. Overview of water resource assessment in South Africa: Current state and future challenges. Water SA 2011, 37, 659–664. [Google Scholar] [CrossRef]
- Haarhoff, S.J.; Kotzé, T.; Swanepoel, P. A prospectus for sustainability of rainfed maize production systems in South Africa. Crop Sci. 2020, 60, 14–28. [Google Scholar] [CrossRef]
- Gokool, S.; Mahomed, M.; Kunz, R.; Clulow, A.; Sibanda, M.; Naiken, V.; Chetty, K.; Mabhaudhi, T. Crop monitoring in smallholder farms using unmanned aerial vehicles to facilitate precision agriculture practices: A scoping review and bibliometric analysis. Sustainability 2023, 15, 3557. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Kage, H. Sentinel-2 data for precision agriculture?—A UAV-based assessment. Sensors 2021, 21, 2861. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef]
- Niu, H.; Wang, D.; Chen, Y. Estimating actual crop evapotranspiration using deep stochastic configuration networks model and UAV-based crop coefficients in a pomegranate orchard. J. Intell. Robot. Syst. 2020, 104, 76–82. [Google Scholar] [CrossRef]
- Fritschen, L.J. Accuracy of evapotranspiration determinations by the Bowen ratio method. Hydrol. Sci. J. 1965, 10, 38–48. [Google Scholar] [CrossRef]
- Angus, D.E.; Watts, P.J. Evapotranspiration—How Good is the Bowen Ratio Method? In Developments in Agricultural and Managed Forest Ecology; Sharma, M.L., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 13, pp. 133–150. [Google Scholar]
- Nagler, P.L.; Scott, R.L.; Westenburg, C.; Cleverly, J.R.; Glenn, E.P.; Huete, A.R. Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- De Bruin, H.; Meijninger, W.; Smedman, A.-S.; Magnusson, M. Displaced-Beam Small Aperture Scintillometer Test. Part I: The Wintex Data-Set. Bound. Layer Meteorol. 2002, 105, 129–148. [Google Scholar] [CrossRef]
- Beyrich, F.; Bange, J.; Hartogensis, O.K.; Raasch, S.; Braam, M.; van Dinther, D.; Gräf, D.; van Kesteren, B.; van den Kroonenberg, A.C.; Maronga, B.; et al. Towards a Validation of Scintillometer Measurements: The LITFASS-2009 Experiment. Bound. Layer Meteorol. 2012, 144, 83–112. [Google Scholar] [CrossRef]
- Paw, U.K.T.; Qiu, J.; Su, H.-B.; Watanabe, T.; Brunet, Y. Surface renewal analysis: A new method to obtain scalar fluxes. Agric. For. Meteorol. 1995, 74, 119–137. [Google Scholar] [CrossRef]
- Díaz-Varela, R.A.; De la Rosa, R.; León, L.; Zarco-Tejada, P.J. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sens. 2015, 7, 4213–4232. [Google Scholar] [CrossRef]
- Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Opp, C.; Nagler, P.; Thenkabail, P.S.; Siebert, S. Mapping vegetation index-derived actual evapotranspiration across croplands using the Google Earth Engine platform. Remote Sens. 2023, 15, 1017. [Google Scholar] [CrossRef]
- Gonzalez-Dugoa, V.; Zarco-Tejadaa, P.; Fereres, E. Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric. For. Meteorol. 2014, 198, 94–104. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Bennett, M.K.; Younes, N.; Joyce, K. Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth Engine. Drones 2020, 4, 50. [Google Scholar] [CrossRef]
- Cucho-Padin, G.; Loayza, H.; Palacios, S.; Balcazar, M.; Carbajal, M.; Roberto, Q. Development of low-cost remote sensing tools and methods for supporting smallholder agriculture. Appl. Geomat. 2019, 12, 247–263. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Niu, H.; Hollenbeck, D.; Zhao, T.; Wang, D.; Chen, Y. Evapotranspiration estimation with small UAVs in precision agriculture. Sensors 2020, 20, 6427. [Google Scholar] [CrossRef]
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A bibliometric review of the use of unmanned aerial vehicles in precision agriculture and precision viticulture for sensing applications. Remote Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Cheema, M.; Zaman, Q.; Shaheen, A.; Aslam, B.; Zhu, W.; Ajmal, M.; Faheem, M. UAV-based remote sensing in plant stress imagine using high-resolution thermal sensor for digital agriculture practices: A meta-review. Int. J. Environ. Sci. Technol. 2023, 20, 1135–1152. [Google Scholar] [CrossRef]
- Raparelli, E.; Bajocco, S. A bibliometric analysis on the use of unmanned aerial vehicles in agricultural and forestry studies. Int. J. Remote Sens. 2019, 40, 9070–9083. [Google Scholar] [CrossRef]
- Rivera, M.; Pizam, A. Advances in hospitality research: “From Rodney Dangerfield to Aretha Franklin”. Int. J. Contemp. Hosp. Manag. 2015, 27, 362–378. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Pinto, C.; Serra, F. The transaction costs theory in international business research: A bibliometric study over three decades. Scientometrics 2014, 98, 1899–1922. [Google Scholar] [CrossRef]
- Geng, D.; Feng, Y.; Zhu, Q. Sustainable design for users: A literature review and bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 29824–29836. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-based high resolution thermal imaging for vegetation monitoring and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap cameras. Remote Sens. 2019, 11, 330. [Google Scholar] [CrossRef]
- Kim, W.; Khan, G.; Wood, J.; Mahmood, M. Employee engagement for sustainable organizations: Keyword analysis using social network analysis and burst detection approach. Sustainability 2016, 8, 631. [Google Scholar] [CrossRef]
- Dixit, A.; Jakhar, S. Airport capacity management: A review and bibliometric analysis. J. Air Transp. Manag. 2021, 91, 102010. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Han, Y.; Tarakey, B.A.; Hong, S.-J.; Kim, S.-Y.; Kim, E.; Lee, C.-H.; Kim, G. Calibration and image processing of aerial thermal image for UAV application in crop water stress estimation. J. Sens. 2021, 2021, 5537795. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite- and drone-based remote sensing of crops and soils for smart farming—A review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Gautam, D.; Pagay, V. A Review of Current and Potential Applications of Remote Sensing to Study the Water Status of Horticultural Crops. Agronomy 2020, 10, 140. [Google Scholar] [CrossRef]
- Gautam, D.; Ostendorf, B.; Pagay, V. Estimation of grapevine crop coefficient using a multispectral camera on an unmanned aerial vehicle. Remote Sens. 2021, 13, 2639. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, T.; Wang, D.; Chen, Y. Estimating evapotranspiration of pomegranate trees using stochastic configuration networks (SCN) and UAV multispectral imagery. J. Intell. Robot. Syst. 2022, 104, 66. [Google Scholar] [CrossRef]
- Chávez, R.; Grönwall, J.; Kwast, J.; Danert, K.; Foppen, J. Estimating domestic self-supply groundwater use in urban continental Africa. Environ. Res. Lett. 2020, 15, 1040b2. [Google Scholar] [CrossRef]
- Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Naranjo, G.; Gambacorta, E. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Wang, Y.; Zhang, L.; Niu, Y.; Zhang, Y.; Cao, P. Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery. Crop J. 2022, 10, 1376–1385. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Kilic, A.; Allen, R.; Poblete-Echeverría, C.; Ahumada-Orellana, L.; Zuñiga, M.; Sepúlveda, D. Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV). Remote Sens. 2016, 8, 638. [Google Scholar] [CrossRef]
- Aliabad, F.A.; Shojaei, S.; Mortaz, M.; Ferreira, C.S.S.; Kalantari, Z. Use of Landsat 8 and UAV images to assess changes in temperature and evapotranspiration by economic trees following foliar spraying with light-reflecting compounds. Remote Sens. 2022, 14, 6153. [Google Scholar] [CrossRef]
- Masina, M.; Lambertini, A.; Daprà, I.; Mandanici, E.; Lamberti, A. Remote sensing analysis of surface temperature from heterogeneous data in a maize field and related water stress. Remote Sens. 2020, 12, 2506. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Twenty years of remote sensing applications targeting landscape analysis and environmental issues in olive growing: A review. Remote Sens. 2022, 14, 5430. [Google Scholar] [CrossRef]
- Jackson, R.D. Canopy Temperature and Crop Water Stress. In Advances in Irrigation; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 1982; Volume 1, pp. 43–85. [Google Scholar]
- Rosle, R.; Che’Ya, N.N.; Ang, Y.; Rahmat, F.; Wayayok, A.; Berahim, Z.; Fazlil Ilahi, W.F.; Ismail, M.R.; Omar, M.H. Weed detection in rice fields using remote sensing technique: A review. Appl. Sci. 2021, 11, 701. [Google Scholar] [CrossRef]
- Tang, J.; Han, W.; Zhang, L. UAV multispectral imagery combined with the FAO-56 dual approach for maize evapotranspiration mapping in the North China Plain. Remote Sens. 2019, 11, 2519. [Google Scholar] [CrossRef]
- Molaei, B.; Chandel, A.K.; Peters, R.T.; Khot, L.R.; Khan, A.; Maureira, F.; Stockle, C. Investigating the application of artificial hot and cold reference surfaces for improved ETc estimation using the UAS-METRIC energy balance model. Agric. Water Manag. 2023, 284, 108346. [Google Scholar] [CrossRef]
- Gibson, L.A.; Münch, Z.; Engelbrecht, J. Particular uncertainties encountered in using a pre-packaged SEBS model to derive evapotranspiration in a heterogeneous study area in South Africa. Hydrol. Earth Syst. Sci. 2011, 15, 295–310. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 2012, 48, W11512. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H.; Jensen, R.; Mendiguren, G. Remotely sensed land-surface energy fluxes at sub-field scale in heterogeneous agricultural landscape and coniferous plantation. Biogeosciences 2014, 11, 5021–5046. [Google Scholar] [CrossRef]
- Timmermans, W.; Kustas, W.; Andreu, A. Utility of an automated thermal-based approach for monitoring evapotranspiration. Acta Geophys. 2015, 63, 1571–1608. [Google Scholar] [CrossRef]
- Filgueiras, R.; Mantovani, E.; Althoff, D.; Balieiro Ribeiro, R.; Venancio, L.; Argolo dos Santos, R. Dynamics of actual crop evapotranspiration based in the comparative analysis of SEBAL and METRIC-EEFLUX. IRRIGA 2019, 1, 72–80. [Google Scholar] [CrossRef]
- Ellsäßer, F.; Röll, A.; Stiegler, C.; Hendrayanto; Hölscher, D. Introducing QWaterModel, a QGIS plugin for predicting evapotranspiration from land surface temperatures. Environ. Model. Softw. 2020, 130, 104739. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A.; Kalacska, M. Integration of satellite imagery and in situ soil moisture data for estimating irrigation water requirements. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102396. [Google Scholar] [CrossRef]
- Venancio, L.P.; Eugenio, F.C.; Filgueiras, R.; França da Cunha, F.; Argolo dos Santos, R.; Ribeiro, W.R.; Mantovani, E.C. Mapping within-field variability of soybean evapotranspiration and crop coefficient using the Earth Engine Evaporation Flux (EEFlux) application. PLoS ONE 2020, 15, e0235620. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Antoniuk, V.; Manevski, K.; Kørup, K.; Larsen, R.; Sandholt, I.; Zhang, X.; Andersen, M.N. Diurnal and seasonal mapping of water deficit index and evapotranspiration by an unmanned aerial system: A case study for winter wheat in Denmark. Remote Sens. 2021, 13, 2998. [Google Scholar] [CrossRef]
- Tabari, H.; Martinez, C.; Ezani, A.; Hosseinzadeh Talaee, P. Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration. Irrig. Sci. 2013, 31, 575–588. [Google Scholar] [CrossRef]
- Gocic, M.; Petković, D.; Shamshirband, S.; Kamsin, A. Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine. Comput. Electron. Agric. 2016, 127, 56–63. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H.; Zounemat-Kermani, M.; Niazi, F. Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Comput. Electron. Agric. 2015, 115, 66–77. [Google Scholar] [CrossRef]
- Petković, D.; Gocic, M.; Shamshirband, S.; Qasem, S.N.; Trajkovic, S. Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration. Theor. Appl. Climatol. 2016, 125, 555–563. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Hassanijalilian, O.; Igathinathane, C.; Doetkott, C.; Bajwa, S.G.; Bajwa, S.G.; Nowatzki, J.; Esmaeili, S.A.H.; Esmaeili, S.A.H. Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning. Comput. Electron. Agric. 2020, 174, 105433. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, G.; Sun, H.; Wang, H.; Chen, S.; Senthilnath, J.; Wang, J.; Fu, Y. Scaling effects on chlorophyll content estimations with RGB camera mounted on a UAV platform using machine-learning methods. Sensors 2020, 20, 5130. [Google Scholar] [CrossRef]
- Marques Ramos, A.P.; Osco, L.P.; Garcia Furuya, D.E.; Nunes Gonçalves, W.; Cordeiro Santana, D.; Ribeiro Teodoro, L.P.; da Silva Junior, C.A.; Capristo-Silva, G.F.; Li, J.; Rojo Baio, F.H.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Peddinti, S.R.; Kisekka, I. Estimation of turbulent fluxes over almond orchards using high-resolution aerial imagery with one and two-source energy balance models. Agric. Water Manag. 2022, 269, 107671. [Google Scholar] [CrossRef]
- Mokari, E.; Samani, Z.; Heerema, R.; Dehghan-Niri, E.; DuBois, D.; Ward, F.; Pierce, C. Development of a new UAV-thermal imaging based model for estimating pecan evapotranspiration. Comput. Electron. Agric. 2022, 194, 106752. [Google Scholar] [CrossRef]
- Chandel, A.K.; Molaei, B.; Khot, L.R.; Peters, R.T.; Stöckle, C.O. High resolution geospatial evapotranspiration mapping of irrigated field crops using multispectral and thermal infrared imagery with METRIC energy balance model. Drones 2020, 4, 52. [Google Scholar] [CrossRef]
- Espinoza, C.Z.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Lu, S.; Xuan, J.; Zhang, T.; Bai, X.; Tian, F.; Ortega-Farias, S. Effect of the shadow pixels on evapotranspiration inversion of vineyard: A high-resolution UAV-based and ground-based remote sensing measurements. Remote Sens. 2022, 14, 2259. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef] [PubMed]
Description | Result | Description | Result |
---|---|---|---|
Timespan | 2013–2023 | References | 3040 |
Number of journals | 21 | Author’s keywords (DE) | 185 |
Number of publications | 49 | Authors | 243 |
Annual growth rate % | 7.18 | Single-authored documents | 0 |
Document average age | 2.78 | Co-authors per document | 5.94 |
Average citations per document | 41.29 | International co-authorships % | 36.73 |
Journal | TC | TC per Year | Normalised TC |
---|---|---|---|
Agricultural Water Management | 372 | 41.33 | 1.00 |
Precision Agriculture | 249 | 24.90 | 1.00 |
Precision Agriculture | 240 | 21.82 | 1.00 |
Remote Sensing | 146 | 29.20 | 2.17 |
Remote Sensing | 108 | 27.00 | 4.03 |
Remote Sensing | 97 | 19.40 | 1.44 |
Remote Sensing | 88 | 12.57 | 1.20 |
Remote Sensing | 82 | 16.40 | 1.22 |
Biosystems Engineering | 62 | 10.33 | 1.00 |
Computers and Electronics in Agriculture | 61 | 20.33 | 3.48 |
Journal | Publication Start Year | Number of Publications | h-Index | TCs |
---|---|---|---|---|
Remote Sensing | 2017 | 18 | 11 | 660 |
Agricultural Water Management | 2015 | 8 | 6 | 504 |
Precision Agriculture | 2013 | 3 | 3 | 548 |
Computers and Electronics in Agriculture | 2021 | 2 | 2 | 65 |
Drones | 2020 | 2 | 2 | 26 |
International Journal of Environmental Science and Technology | 2023 | 1 | 1 | 14 |
Crop Journal | 2022 | 1 | 1 | 2 |
Journal of Intelligent and Robotic Systems: Theory and Applications | 2022 | 1 | 1 | 2 |
Journal of ASABE | 2022 | 1 | 1 | 2 |
Journal of Universal Computer Science | 2022 | 1 | 1 | 4 |
Remote Sensing Applications: Society and Environment | 2022 | 1 | 1 | 1 |
Environmental Technology and Innovation | 2021 | 1 | 1 | 18 |
Hydrology | 2021 | 1 | 1 | 12 |
Information Sciences Letters | 2021 | 1 | 1 | 13 |
International Journal of Applied Earth Observation and Geoinformation | 2021 | 1 | 1 | 11 |
Journal of Sensors | 2021 | 1 | 1 | 6 |
Agronomy | 2020 | 1 | 1 | 27 |
Applied Computational Electromagnetics Society Journal | 2020 | 1 | 1 | 11 |
Sensors (Switzerland) | 2020 | 1 | 1 | 25 |
Water (Switzerland) | 2020 | 1 | 1 | 10 |
Biosystems Engineering | 2018 | 1 | 1 | 62 |
Author Keyword | Frequency (%) | Author Keyword | Frequency (%) |
---|---|---|---|
remote sensing | 14.00 | canopy temperature | 3.00 |
unmanned aerial vehicles | 14.00 | land surface temperature | 3.00 |
evapotranspiration | 10.00 | thermal imagery | 3.00 |
precision agriculture | 9.00 | deep learning | 3.00 |
CWSI | 7.00 | irrigation | 3.00 |
water stress | 6.00 | grapevines | 2.00 |
precision irrigation | 4.00 | image processing | 2.00 |
stomatal conductance | 4.00 | irrigation scheduling | 2.00 |
vegetation index | 4.00 | Landsat 8 | 2.00 |
drone | 4.00 | machine learning | 2.00 |
Keyword Plus | Frequency (%) | Keyword Plus | Frequency (%) |
---|---|---|---|
remote sensing | 13.00 | water stress | 3.00 |
unmanned aerial vehicle | 11.00 | infrared-imaging | 3.00 |
antennas | 8.00 | crop water stress indices | 3.00 |
crops | 8.00 | vegetation index | 3.00 |
evapotranspiration | 8.00 | agricultural robots | 2.00 |
irrigation | 7.00 | energy balance | 2.00 |
precision agriculture | 7.00 | satellite imagery | 2.00 |
water management | 4.00 | land surface temperature | 2.00 |
soil moisture | 4.00 | plants (botany) | 2.00 |
vegetation | 3.00 | water supply | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yacoob, A.; Gokool, S.; Clulow, A.; Mahomed, M.; Mabhaudhi, T. Leveraging Unmanned Aerial Vehicle Technologies to Facilitate Precision Water Management in Smallholder Farms: A Scoping Review and Bibliometric Analysis. Drones 2024, 8, 476. https://doi.org/10.3390/drones8090476
Yacoob A, Gokool S, Clulow A, Mahomed M, Mabhaudhi T. Leveraging Unmanned Aerial Vehicle Technologies to Facilitate Precision Water Management in Smallholder Farms: A Scoping Review and Bibliometric Analysis. Drones. 2024; 8(9):476. https://doi.org/10.3390/drones8090476
Chicago/Turabian StyleYacoob, Ameera, Shaeden Gokool, Alistair Clulow, Maqsooda Mahomed, and Tafadzwanashe Mabhaudhi. 2024. "Leveraging Unmanned Aerial Vehicle Technologies to Facilitate Precision Water Management in Smallholder Farms: A Scoping Review and Bibliometric Analysis" Drones 8, no. 9: 476. https://doi.org/10.3390/drones8090476
APA StyleYacoob, A., Gokool, S., Clulow, A., Mahomed, M., & Mabhaudhi, T. (2024). Leveraging Unmanned Aerial Vehicle Technologies to Facilitate Precision Water Management in Smallholder Farms: A Scoping Review and Bibliometric Analysis. Drones, 8(9), 476. https://doi.org/10.3390/drones8090476