Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of the Coating Composition
3.2. Effect of Welding Current
3.3. XRD Analysis
3.4. Hardness
3.5. Surface Morphology
4. Conclusions
- The results of the study showed that the hardness of the treated layer of the Ti-6Al-4V surface could be successfully improved by embedding ceramic nanoparticles into the surface layer.
- The treated layer with the maximum hardness corresponded to the sample surface melted with 50 A welding current.
- The Ni/Al2O3 coating was more effective at doubling the surface hardness. The hardness of the surface layer decreased with the increasing size of the nanoparticles.
- The morphology of the surface is significantly affected by the welding current and coating composition. Surface roughness increased with welding current and decreased with increasing particle size.
- The heat input into the surface during the surface melting process resulted in the formation of various intermetallic compounds capable of increasing the hardness of the Ti-6Al-4V surface layer.
Author Contributions
Funding
Conflicts of Interest
References
- Peters, M.; Hemptenmacher, J.; Kumpfert, J.; Leyens, C. Structure and Properties of Titanium and Titanium Alloys. Titan. Titan. Alloy. 2005, 1–36. [Google Scholar] [CrossRef]
- de Viteri, V.S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials. Tribol. Fundam. Adv. 2013. [Google Scholar] [CrossRef] [Green Version]
- Warlimont, H. Titanium, and Titanium Alloys. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of Ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- German, V.; Alin Pop, M.; Luca Motoc, D.; Radomir, I. Tribological Properties of Thermal Spray Coatings. Eur. Sci. J. 2013, 3, 154–159. [Google Scholar]
- Dong, H. Tribological properties of titanium-based alloys. In Surface Engineering of Light Alloys; Woodhead Publishing: Cambridge, UK, 2010; pp. 58–80. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Saleh, A.F.; Abboud, J.H.; Benyounis, K.Y. Surface carburizing of Ti-6Al-4V alloy by laser melting. Opt. Lasers Eng. 2010, 48, 257–267. [Google Scholar] [CrossRef]
- Rizzi, M.; Gatti, G.; Migliario, M.; Marchese, L.; Rocchetti, V.; Renò, F. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws. J. Prosthet. Dent. 2014, 112, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Zhou, P.; Wang, Y.; Zou, J.; Ma, Y.; Wang, Z.; Tian, W.; Yao, X.; Tang, B. Thermal oxidation of Ti6Al4V alloy with enhanced wear and corrosion resistance for oil and gas application: Effect of temperature. Surf. Rev. Lett. 2015, 22, 1550033. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Singh, H.; Puri, D.; Prakash, S. Wear, and oxidation behaviour of shrouded plasma sprayed fly ash coatings. Tribol. Int. 2007, 40, 800–808. [Google Scholar] [CrossRef]
- Lin, N.; Liu, Q.; Zou, J.; Li, D.; Yuan, S.; Wang, Z.; Tang, B. Surface damage mitigation of Ti6Al4V alloy via thermal oxidation for oil and gas exploitation application: Characterization of the microstructure and evaluation of the surface performance. RSC Adv. 2017, 7, 13517–13535. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ernst, F.; Michal, G.M.; Heuer, A.H. Surface hardening of Ti alloys by gas-phase nitridation: Kinetic control of the nitrogen surface activity. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36, 2429–2434. [Google Scholar] [CrossRef]
- Yazdi, R.; Kashani-Bozorg, S.F. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid-phase process. Mater. Chem. Phys. 2015, 152, 147–157. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I.; Oliver, G.D. Transient liquid phase diffusion bonding Al-6061 using nano-dispersed Ni coatings. Mater. Des. 2012, 33, 469–475. [Google Scholar] [CrossRef]
- Cooke, K.O. Parametric Analysis of Electrodeposited Nanocomposite Coatings for Abrasive Wear Resistance. In Electrodeposition of Composite Materials; Intech Open: London, UK, 2014; p. 64. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, T.S.; Cooke, K.O.; Khan, T.I.; Shar, M.A. Nanoparticle enhanced eutectic reaction during diffusion brazing of aluminum to magnesium. Nanomaterials 2019, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Easterling, K. Introduction to the Physical Metallurgy of Welding; Butterworth-Heinemann: Oxford, UK, 1992. [Google Scholar] [CrossRef]
- Shao, X.; Guo, X.; Han, Y.; Lin, Z.; Qin, J.; Lu, W.; Zhang, D. Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti-Ni systems. J. Mater. Res. 2014, 29, 2707–2716. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zhang, C.H. Synthesis of TiNi-TiN gradient coating by a hybrid method of laser cladding and laser nitriding. Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferrous Met. 2006, 16, 213–218. [Google Scholar]
- Gong, J.; Wilkinson, A.J. A microcantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for <a> prism slip in alpha-Ti. Acta Mater. 2011, 59, 5970–5981. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I. Resistance spot welding aluminum to magnesium using nanoparticle reinforced eutectic forming interlayers. Sci. Technol. Weld. Join. 2017, 23, 271–278. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I. Microstructure Development during Low-Current Resistance Spot Welding of Aluminum to Magnesium. J. Manuf. Mater. Process. 2019, 3, 46. [Google Scholar] [CrossRef] [Green Version]
Alloy | Al | Mn | V | Ag | Si | Fe | Ti |
---|---|---|---|---|---|---|---|
Ti-6Al-4V | 6.37 | 0.23 | 4.33 | 0.86 | 0.15 | 0.03 | Bal. |
Parameters | Levels Settings | ||
---|---|---|---|
Particle concentration | Ni/Al2O3 (20g/L) 40 nm | Ni/Al2O3 + TiO2 (10 and 10 g/L) 40 nm + 32 nm | Ni/Al2O3 + TiO2 (10 and 10 g/L) 40 nm + 250 nm |
Welding current (A) | 50 | 75 | 100 |
Heat input (J/mm) | 337.5 | 506.25 | 675 |
Phase | Ti | O | Al | Ni | V |
---|---|---|---|---|---|
a | 89.38 | 6.95 | 2.07 | - | 1.60 |
b | 57.11 | 38.06 | 4.83 | - | - |
c | 52.51 | 3.14 | 3.2 | 39.44 | 2.01 |
d | 50.35 | 7.89 | 8.34 | 32.22 | 2.76 |
e | 62.53 | 3.15 | 6.53 | 35.18 | 1.09 |
f | 83.9 | - | 4.48 | 7.49 | 4.14 |
g | 82.29 | - | 4.03 | 9.85 | 3.83 |
h | 78.61 | 1.92 | 5.51 | 10.22 | 3.74 |
i | 62.55 | - | 2.3 | 34.10 | 1.04 |
j | 90.6 | 6.49 | 1.79 | - | 1.13 |
k | 85.06 | - | 6.82 | 3.01 | 5.12 |
l | 76.35 | 1.92 | 5.51 | 12.22 | 4.74 |
m | 62.53 | - | 2.3 | 35.18 | 1.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooke, K.O.; Shar, M.A.; Hussain, S. Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding. J. Manuf. Mater. Process. 2020, 4, 29. https://doi.org/10.3390/jmmp4020029
Cooke KO, Shar MA, Hussain S. Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding. Journal of Manufacturing and Materials Processing. 2020; 4(2):29. https://doi.org/10.3390/jmmp4020029
Chicago/Turabian StyleCooke, Kavian Omar, Muhammad Ali Shar, and Suleman Hussain. 2020. "Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding" Journal of Manufacturing and Materials Processing 4, no. 2: 29. https://doi.org/10.3390/jmmp4020029
APA StyleCooke, K. O., Shar, M. A., & Hussain, S. (2020). Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding. Journal of Manufacturing and Materials Processing, 4(2), 29. https://doi.org/10.3390/jmmp4020029