Behavior of Pultruded Glass-Fiber-Reinforced Polymer Beam-Columns Infilled with Engineered Cementitious Composites under Cyclic Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. GFRP Sections
2.2. Engineered Cementitious Composite with High-Volume Fly Ash (ECC-HVFA)
2.2.1. Mechanical Properties of HVFA-ECC
Compressive Strength
Direct Tensile Strength
2.3. Beam-Column Specimens
2.4. Experimental Investigation
Lateral Loading on Pultruded GFRP Beam-Column with and without HVFA-ECC
3. Results and Discussion
3.1. Lateral Load–Deformation Behavior
3.2. Strength of the Beam-Column Specimens
3.3. Energy Dissipation Capacity
3.4. “Pseudo-Ductile” Behavior
4. Numerical Investigations
4.1. Modeling and Meshing
4.2. Support and Loading Condition
4.3. Load–Deflection Behavior of Beam-Columns
5. Conclusions
- The average ultimate tensile strength, compressive strength, elastic modulus, flexural strength, flexural modulus, shear strength, and shear modulus are 387.5 MPa, 150 MPa, 17.2 Mpa, 215 MPa, 1.1 GPa, 29 MPa, and 3 GPa, respectively.
- In the direct tensile strength test, the ultimate tensile strength of ECC-60P, ECC-70P, and ECC-80P was, respectively, 7%, 9%, and 11.5% less than ECC-0, and the ultimate tensile strains of ECC-60P, ECC-70P, and ECC-80P were 20% less than that of ECC-0.
- The average lateral load-carrying capacity of BCG-E60P, BCG-E70P, and BCG-E80P was found to be, respectively, 43%, 31%, and 20% higher than that of BCG-H.
- The energy dissipation of the BCG-E60P, BCG-E70P, and BCG-E80P beam-column specimens was, respectively, 100%, 39%, and 23% higher than that of the BCG-H specimen.
- Further, BCG-E60P, BCG-E70P, and BCG-E80P exhibited, respectively, 67%, 48%, and 31% more pseudo-ductility than BCG-H.
- ECC with fly ash up to 70% as a replacement for cement could be utilized in infilling the GFRP sections.
- The analytical results obtained from RSA show good agreement with the experimental results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hollaway, L.C. A Review of the Present and Future Utilisation of FRP Composites in the Civil Infrastructure with Reference to Their Important In-Service Properties. Constr. Build. Mater. 2010, 24, 2419–2445. [Google Scholar] [CrossRef]
- Singh, S.B.; Chawla, H. An Investigation of Material Characterization of Pultruded FRP H- and I-Beams. Mech. Adv. Mater. Struct. 2016, 25, 124–142. [Google Scholar] [CrossRef]
- Landesmann, A.; Seruti, C.A.; Batista, E.D.M. Mechanical Properties of Glass Fiber Reinforced Polymers Members for Structural Applications. Mater. Res. 2015, 18, 1372–1383. [Google Scholar] [CrossRef] [Green Version]
- da S. Santos Neto, A.B.; Lebre La Rovere, H. Flexural Stiffness Characterization of Fiber Reinforced Plastic (FRP) Pultruded Beams. Compos. Struct. 2007, 81, 274–282. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.M. Mechanical Properties of Linear Low-Density Polyethylene Fire-Retarded with Melamine Polyphosphate. J. Appl. Polym. Sci. 2018, 135, 46770. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.Y.M.; Zaghloul, M.M.Y. Experimental and Modeling Analysis of Mechanical-Electrical Behaviors of Polypropylene Composites Filled with Graphite and MWCNT Fillers. Polym. Test. 2017, 63, 467–474. [Google Scholar] [CrossRef]
- Correia, J.R.; Branco, F.A.; Silva, N.M.F.; Camotim, D.; Silvestre, N. First-Order, Buckling and Post-Buckling Behaviour of GFRP Pultruded Beams. Part 1: Experimental Study. Comput. Struct. 2011, 89, 2052–2064. [Google Scholar] [CrossRef]
- Vieira, P.R.; Carvalho, E.M.L.; Vieira, J.D.; Toledo Filho, R.D. Experimental Fatigue Behavior of Pultruded Glass Fibre Reinforced Polymer Composite Materials. Compos. Part B Eng. 2018, 146, 69–75. [Google Scholar] [CrossRef]
- Zhang, S.; Caprani, C.C.; Heidarpour, A. Strain Rate Studies of Pultruded Glass Fibre Reinforced Polymer Material Properties: A Literature Review. Constr. Build. Mater. 2018, 171, 984–1004. [Google Scholar] [CrossRef]
- Al-saadi, A.U.; Aravinthan, T.; Lokuge, W. Effects of Fibre Orientation and Layup on the Mechanical Properties of the Pultruded Glass Fibre Reinforced Polymer Tubes. Eng. Struct. 2019, 198, 109448. [Google Scholar] [CrossRef]
- Sirajudeen, R.S.; Sekar, R. Buckling Analysis of Pultruded Glass Fiber Reinforced Polymer (GFRP) Angle Sections. Polymers 2020, 12, 2532. [Google Scholar] [CrossRef] [PubMed]
- Fam, A.; Cole, B.; Mandal, S. Composite Tubes as an Alternative to Steel Spirals for Concrete Members in Bending and Shear. Constr. Build. Mater. 2007, 21, 347–355. [Google Scholar] [CrossRef]
- Rozylo, P. Stability and Failure of Compressed Thin-Walled Composite Columns Using Experimental Tests and Advanced Numerical Damage Models. Int. J. Numer. Methods Eng. 2021, 122, 5076–5099. [Google Scholar] [CrossRef]
- Liu, X.; Karami, B.; Shahsavari, D.; Civalek, Ö. Elastic Wave Characteristics in Damped Laminated Composite Nano-Scaled Shells with Different Panel Shapes. Compos. Struct. 2021, 267, 113924. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Masmoudi, R. Flexural Strength and Behavior of Steel and FRP-Reinforced Concrete-Filled FRP Tube Beams. Eng. Struct. 2010, 32, 3789–3800. [Google Scholar] [CrossRef]
- Aydın, F.; Sarıbıyık, M. Investigation of Flexural Behaviors of Hybrid Beams Formed with GFRP Box Section and Concrete. Constr. Build. Mater. 2013, 41, 563–569. [Google Scholar] [CrossRef]
- Muttashar, M.; Manalo, A.; Karunasena, W.; Lokuge, W. Influence of Infill Concrete Strength on the Flexural Behaviour of Pultruded GFRP Square Beams. Compos. Struct. 2016, 145, 58–67. [Google Scholar] [CrossRef]
- Li, V.C. On Engineered Cementitious Composites (ECC). J. Adv. Concr. Technol. 2003, 1, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.-H.; Li, V.C. Strain-Hardening Fiber Cement Optimization and Component Tailoring by Means of a Micromechanical Model. Constr. Build. Mater. 2010, 24, 130–139. [Google Scholar] [CrossRef]
- Kang, S.-B.; Tan, K.H.; Zhou, X.-H.; Yang, B. Experimental Investigation on Shear Strength of Engineered Cementitious Composites. Eng. Struct. 2017, 143, 141–151. [Google Scholar] [CrossRef]
- Sivanantham, P.; Gurupatham, B.G.A.; Roy, K.; Rajendiran, K.; Pugazhlendi, D. Plastic Hinge Length Mechanism of Steel-Fiber-Reinforced Concrete Slab under Repeated Loading. J. Compos. Sci. 2022, 6, 164. [Google Scholar] [CrossRef]
- Şahmaran, M.; Bilici, Z.; Ozbay, E.; Erdem, T.K.; Yucel, H.E.; Lachemi, M. Improving the Workability and Rheological Properties of Engineered Cementitious Composites Using Factorial Experimental Design. Compos. Part B Eng. 2013, 45, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J. Study on Mechanical Properties of Cost-Effective Polyvinyl Alcohol Engineered Cementitious Composites (PVA-ECC). Constr. Build. Mater. 2015, 78, 397–404. [Google Scholar] [CrossRef]
- Meng, D.; Lee, C.K.; Zhang, Y.X. Flexural and Shear Behaviours of Plain and Reinforced Polyvinyl Alcohol-Engineered Cementitious Composite Beams. Eng. Struct. 2017, 151, 261–272. [Google Scholar] [CrossRef]
- Lin, C.; Kayali, O.; Morozov, E.V.; Sharp, D.J. Development of Self-Compacting Strain-Hardening Cementitious Composites by Varying Fly Ash Content. Constr. Build. Mater. 2017, 149, 103–110. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, R.; Liao, P.; Li, F.; Yuan, Y.; Zhou, S. Experimental Study on Mix Proportion of Fiber Reinforced Cementitious Composites. AIP Conf. Proc. 2017, 1890, 020002. [Google Scholar] [CrossRef] [Green Version]
- Rajamony Laila, L.; Gurupatham, B.G.A.; Roy, K.; Lim, J.B.P. Effect of Super Absorbent Polymer on Microstructural and Mechanical Properties of Concrete Blends Using Granite Pulver. Struct. Concr. 2020, 22, E898–E915. [Google Scholar] [CrossRef]
- Yu, J.; Mishra, D.K.; Wu, C.; Leung, C.K. Very High Volume Fly Ash Green Concrete for Applications in India. Waste Manag. Res. J. A Sustain. Circ. Econ. 2018, 36, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Shanour, A.S.; Said, M.; Arafa, A.I.; Maher, A. Flexural Performance of Concrete Beams Containing Engineered Cementitious Composites. Constr. Build. Mater. 2018, 180, 23–34. [Google Scholar] [CrossRef]
- Ismail, M.K.; Abdelaleem, B.H.; Hassan, A.A.A. Effect of Fiber Type on the Behavior of Cementitious Composite Beam-Column Joints under Reversed Cyclic Loading. Constr. Build. Mater. 2018, 186, 969–977. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Ozbakkaloglu, T. Synthetic Fibers for Cementitious Composites: A Critical and In-Depth Review of Recent Advances. Constr. Build. Mater. 2019, 207, 491–518. [Google Scholar] [CrossRef]
- Wang, Q.; Lai, M.H.; Zhang, J.; Wang, Z.; Ho, J.C.M. Greener Engineered Cementitious Composite (ECC)—The Use of Pozzolanic Fillers and Unoiled PVA Fibers. Constr. Build. Mater. 2020, 247, 118211. [Google Scholar] [CrossRef]
- Li, S.W.V.C.; Wu, C. Tensile Strain-Hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC). ACI Mater. J. 2001, 98, 483–492. [Google Scholar] [CrossRef]
- Rajamony Laila, L.; Gurupatham, B.G.A.; Roy, K.; Lim, J.B.P. Influence of Super Absorbent Polymer on Mechanical, Rheological, Durability, and Microstructural Properties of Self-Compacting Concrete Using Non-Biodegradable Granite Pulver. Struct. Concr. 2020, 22, E1093–E1116. [Google Scholar] [CrossRef]
- Yoganantham, C.; Joanna, P.S. Effect of High Volume Fly Ash Concrete in Self-Curing Engineered Cementitious Composite (ECC). Int. J. Adv. Res. Sci. Eng. Technol. 2020, 11, 268–276. [Google Scholar] [CrossRef]
- Lowe, D.; Roy, K.; Das, R.; Clifton, C.G.; Lim, J.B.P. Full Scale Experiments on Splitting Behaviour of Concrete Slabs in Steel Concrete Composite Beams with Shear Stud Connection. Structures 2020, 23, 126–138. [Google Scholar] [CrossRef]
- Yang, E.-H.; Yang, Y.; Li, V.C. Use of High Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness. ACI Mater. J. 2007, 104, 620–628. [Google Scholar] [CrossRef]
- Tosun-Felekoğlu, K.; Gödek, E.; Keskinateş, M.; Felekoğlu, B. Utilization and Selection of Proper Fly Ash in Cost Effective Green HTPP-ECC Design. J. Clean. Prod. 2017, 149, 557–568. [Google Scholar] [CrossRef]
- Yoganantham, C.; Helen Santhi, M. Performance of Self-Compacting Self Curing Concrete with Fly Ash and M Sand. Int. J. Earth Sci. Eng. 2015, 8, 491–497. [Google Scholar]
- Thiruchelve, S.R.; Sivakumar, S.; Raj, M.; Shanmugaraja, G.; Nallathambi, M. Effect of Polyethylene Glycol as Internal Curing Agent in Concrete. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 3521–3524. [Google Scholar]
- Ascione, F.; Lamberti, M.; Razaqpur, A.G.; Spadea, S.; Malagic, M. Pseudo-Ductile Failure of Adhesively Joined GFRP Beam-Column Connections: An Experimental and Numerical Investigation. Compos. Struct. 2018, 200, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Madan, C.S.; Munuswamy, S.; Joanna, P.S.; Gurupatham, B.G.A.; Roy, K. Comparison of the Flexural Behavior of High-Volume Fly AshBased Concrete Slab Reinforced with GFRP Bars and Steel Bars. J. Compos. Sci. 2022, 6, 157. [Google Scholar] [CrossRef]
- Madan, C.S.; Panchapakesan, K.; Anil Reddy, P.V.; Joanna, P.S.; Rooby, J.; Gurupatham, B.G.A.; Roy, K. Influence on the Flexural Behaviour of High-Volume Fly-Ash-Based Concrete Slab Reinforced with Sustainable Glass-Fibre-Reinforced Polymer Sheets. J. Compos. Sci. 2022, 6, 169. [Google Scholar] [CrossRef]
- Yoganantham, C.; Joanna, P.S. Flexural Behaviour of Pultruded GFRP Beams Infilled with HVFA ECC. Mater. Today Proc. 2021, 45, 5978–5981. [Google Scholar] [CrossRef]
- ASTM D3039; International Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D3410; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. Astm International: West Conshohocken, PA, USA, 2010.
- ASTM D2344; Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM C1273; Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures. ASTM International: West Conshohocken, PA, USA, 2015.
Name of the Test | Coupon Size (mm) |
---|---|
Tensile strength | 250 × 25 × 5 |
Compressive strength | 125 × 25 × 5 |
Flexural strength | 360 × 15 × 5 |
Interlaminar shear strength | 50 × 15 × 5 |
Fibre | Density | Initial Modulus | Specification | Oil Agent Content |
---|---|---|---|---|
PVA | 1.29 | 280 cN/dtex | 12 mm | 0.2% |
Sl. No | PEG600 | |
---|---|---|
1 | Solubility | Soluble in water |
2 | Density | 1.126 kg/m3 |
3 | Odor | Mild odor |
4 | Mean molecular weight | 570–630 kg/m3 |
5 | Appearance | Clear liquid |
Mix | Description | Cement to Binder (B) | Fly Ash to B | M-Sand to B | Water to B | HRWR to B | Fiber to B | PEG to B |
---|---|---|---|---|---|---|---|---|
1 | ECC-0 | 1 | 0 | 0.6 | 0.35 | 0.005 | 0.01 | 0 |
2 | ECC-60P | 0.4 | 0.6 | 0.6 | 0.37 | 0.005 | 0.01 | 0.02 |
3 | ECC-70P | 0.3 | 0.7 | 0.6 | 0.4 | 0.005 | 0.01 | 0.02 |
4 | ECC-80P | 0.2 | 0.8 | 0.6 | 0.44 | 0.005 | 0.01 | 0.02 |
Mix | Mix Description | 7 Days (MPa) | 28 Days (MPa) | 56 Days (MPa) |
---|---|---|---|---|
1 | ECC-0 | 15.6 | 33.5 | 36.2 |
2 | ECC-60P | 12.9 | 28.7 | 34.5 |
3 | ECC-70P | 9.36 | 26.9 | 31.2 |
4 | ECC-80P | 6.01 | 23.7 | 28.4 |
Mix Description | Mix | Tensile Stress (MPa) | Tensile Strain (%) | |
---|---|---|---|---|
At Initial Crack | At Ultimate Level | Ultimate Level | ||
ECC-0 | 2 | 4.40 | 4.80 | 1.22 |
ECC-60P | 4 | 4.10 | 4.30 | 0.97 |
ECC-70P | 7 | 4.05 | 4.15 | 0.97 |
ECC-80P | 10 | 3.90 | 3.98 | 0.97 |
Sl. No. | Beam-Column ID | No of Specimens | Outer Material | Infill Material |
---|---|---|---|---|
1 | BCG-H | 2 | GFRP Section | - |
2 | BCG-E60P | 2 | GFRP Section | ECC-60P |
3 | BCG-E70P | 2 | GFRP Section | ECC-70P |
4 | BCG-E80P | 2 | GFRP Section | ECC-80P |
Sl. No. | Beam-Column ID | du (mm) | dy (mm) | μ (-) |
---|---|---|---|---|
1 | BCG-H | 30 | 30 | 0 |
2 | BCG-E60P | 52 | 28 | 0.46 |
3 | BCG-E70P | 46 | 28 | 0.39 |
4 | BCG-E80P | 38 | 24 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinnasamy, Y.; Joanna, P.S.; Kothanda, K.; Gurupatham, B.G.A.; Roy, K. Behavior of Pultruded Glass-Fiber-Reinforced Polymer Beam-Columns Infilled with Engineered Cementitious Composites under Cyclic Loading. J. Compos. Sci. 2022, 6, 338. https://doi.org/10.3390/jcs6110338
Chinnasamy Y, Joanna PS, Kothanda K, Gurupatham BGA, Roy K. Behavior of Pultruded Glass-Fiber-Reinforced Polymer Beam-Columns Infilled with Engineered Cementitious Composites under Cyclic Loading. Journal of Composites Science. 2022; 6(11):338. https://doi.org/10.3390/jcs6110338
Chicago/Turabian StyleChinnasamy, Yoganantham, Philip Saratha Joanna, Karthikeyan Kothanda, Beulah Gnana Ananthi Gurupatham, and Krishanu Roy. 2022. "Behavior of Pultruded Glass-Fiber-Reinforced Polymer Beam-Columns Infilled with Engineered Cementitious Composites under Cyclic Loading" Journal of Composites Science 6, no. 11: 338. https://doi.org/10.3390/jcs6110338
APA StyleChinnasamy, Y., Joanna, P. S., Kothanda, K., Gurupatham, B. G. A., & Roy, K. (2022). Behavior of Pultruded Glass-Fiber-Reinforced Polymer Beam-Columns Infilled with Engineered Cementitious Composites under Cyclic Loading. Journal of Composites Science, 6(11), 338. https://doi.org/10.3390/jcs6110338