FE Modelling and Simulation of the Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded FRP Fabrics
Abstract
:1. Introduction
2. Finite-Element Modelling
2.1. Suggested FE Modelling
2.2. Constitutive Models of Materials
2.2.1. Concrete Cracking Models
2.2.2. Concrete Response in Compression and Tension
2.2.3. Definition of Compressive and Tensile Damage to Concrete Damage Plasticity (CDP)
2.3. Bond-Slip Model for Concrete–Steel Reinforcement and Concrete–CFRP
2.4. Modelling Internal Steel Reinforcement and EB-CFRP
3. Experimental Investigation
4. Validation with Experimental Tests
4.1. Failure Modes, Crack Patterns, and Ultimate Load-Carrying Capacity
4.2. Load-Deflection Responses
5. FE Simulations and Results
5.1. Shear Strength and Loss in Control and Strengthened Beams
5.2. Distribution of Strain on the Fibres along the Diagonal Shear Crack by FEA
5.3. Strain Distributions along the CFRP Fabric and Interfacial Shear Stress at the Cohesive Layer
6. Conclusions
- By increasing the rigidity of EB-CFRP in small specimens, the shear contribution of EB-CFRP showed a considerable increment, but in large specimens, EB-CFRP experienced a reduction in its absorption of shear stress due to the size effect.
- Delamination on the top parts of the diagonal shear cracks was the dominant failure mode compared to debonding, especially in medium and large specimens strengthened with EB-CFRP fabric.
- A reduction factor to account for size effect is of paramount importance. The reduction factor could be incorporated either into the effective strain or into the distribution factor, which are included in the model to express the shear contribution of EB-FRP.
- The delamination failure initiated suddenly around the tips of the shear crack, where the bond length was minimal.
- Considering strain profiles and interfacial shear stress along with the fibres and the interface layers, when the strain profile reached its peak value or became constant, the interfacial shear stress became zero.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Specimen | Section | Configuration | Fibre | Es | |||||||||||||||||||
[52] | |||||||||||||||||||||||
T4S4-G90 | T- | 180 | 150 | 250 | 140 | 330 | 1.8 | 1 | 1.8 | 3 | 29 | 2.6 | 2.3 | 0.1 | Ct-U | 90 | G | 200 | 17.7 | 250 | 0.014124 | 45,878 | 49,000 |
T6S4-G90 | T- | 380 | 150 | 450 | 140 | 530 | 1.8 | 1 | 1.8 | 2.8 | 44 | 2.6 | 2.7 | 0.1 | Ct-U | 90 | G | 200 | 17.7 | 250 | 0.014124 | 96,854 | 110,000 |
[53] | |||||||||||||||||||||||
SB-U1 | Rect | 155 | 180 | 75 | 155 | 0.11 | 1 | 0.11 | 2.5 | 27.4 | 0.1 | 5.4 | 0.28 | St-U | 90 | C | 200 | 235 | 4200 | 0.02 | 10,684 | 24,000 | |
MB-U1 | Rect | 305 | 360 | 150 | 305 | 0.22 | 2 | 0.11 | 2.5 | 27.4 | 0.1 | 4.4 | 0.28 | St-U | 90 | C | 200 | 235 | 4200 | 0.02 | 42,049 | 5000 | |
LB-U2 | Rect | 660 | 720 | 300 | 660 | 0.44 | 4 | 0.11 | 2.5 | 27.4 | 0.1 | 4.1 | 0.28 | St-U | 90 | C | 200 | 235 | 4200 | 0.02 | 181,984 | 22,000 | |
[54] | |||||||||||||||||||||||
S-Str | Rect | 305 | 368 | 203 | 305 | 0.4191 | 1 | 0.4191 | 3 | 25.2 | 0.05 | 0.16 | 0 | St-U | 90 | C | 200 | 228 | 3450 | 0,015132 | 77,378 | 47,000 | |
M-Str | Rect | 457 | 546 | 305 | 457 | 0,4191 | 1 | 0.4191 | 3 | 32 | 0.05 | 0.16 | 0 | St-U | 90 | C | 200 | 228 | 3450 | 0.015132 | 174,101 | 87,000 | |
L-Str | Rect | 610 | 698.5 | 406 | 610 | 0.4191 | 1 | 0.4191 | 3 | 32 | 0.05 | 0.18 | 0 | St-U | 90 | C | 200 | 228 | 3450 | 0.015132 | 308,423 | 127,000 | |
[55] | |||||||||||||||||||||||
ED2 S0-1L | T- | 100 | 55 | 165 | 95 | 175 | 0.066 | 1 | 0.066 | 3 | 25 | 0.14 | 3.76 | 0 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 12,196 | 23,000 |
ED1 S0-1L | T- | 228 | 102 | 304 | 152 | 350 | 0.066 | 1 | 0.066 | 3 | 25 | 0.14 | 3.61 | 0 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 27,808 | 39,000 |
ED2 S1-1L | T- | 100 | 55 | 165 | 95 | 175 | 0.066 | 1 | 0.066 | 3 | 25 | 0.14 | 3.76 | 0.38 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 12,196 | 3000 |
ED2 S0-2L | T- | 100 | 55 | 165 | 95 | 175 | 0.132 | 2 | 0.066 | 3 | 25 | 0.28 | 3.76 | 0 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 24,393 | 32,000 |
ED1 S0-2L | T- | 228 | 102 | 304 | 152 | 350 | 0.132 | 2 | 0.066 | 3 | 25 | 0.28 | 3.61 | 0 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 55,617 | 40,000 |
ED2 S1-2L | T- | 100 | 55 | 165 | 95 | 175 | 0.132 | 2 | 0.066 | 3 | 25 | 0.28 | 3.76 | 0.38 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 24,393 | 12,000 |
ED1 S1-2L | T- | 228 | 102 | 304 | 152 | 350 | 0.132 | 2 | 0.066 | 3 | 25 | 0.28 | 3.61 | 0.38 | Ct-U | 90 | C | 200 | 231 | 3650 | 0.015801 | 55,617 | 4000 |
[56] | |||||||||||||||||||||||
G1-GFRP-1B | Rect | 175 | 200 | 100 | 175 | 1.3 | 1 | 1.3 | 1.7 | 25 | 2.6 | 1.8 | 0.19 | Ct-U | 90 | G | 200 | 26.1 | 575 | 0.022031 | 47,502 | 18,000 | |
G1-GFRP-2A | Rect | 350 | 400 | 200 | 350 | 2.6 | 1 | 2.6 | 1.7 | 25 | 2.6 | 1.8 | 0.19 | Ct-U | 90 | G | 200 | 26.1 | 575 | 0.022031 | 190,008 | 55,000 | |
G1-GFRP-3A | Rect | 525 | 600 | 300 | 525 | 3.9 | 1 | 3.9 | 1.7 | 25 | 2.6 | 1.8 | 0.19 | Ct-U | 90 | G | 200 | 26.1 | 575 | 0.022031 | 427,518 | 64,000 | |
G2-GFRP-2A | Rect | 442 | 500 | 200 | 442 | 2.6 | 1 | 2.6 | 2 | 23.5 | 2.6 | 2.4 | 0.16 | Ct-U | 90 | G | 200 | 26.1 | 575 | 0.022031 | 239,953 | 80,000 | |
G2-GFRP-3A | Rect | 682 | 750 | 300 | 682 | 3.9 | 1 | 3.9 | 2 | 23.5 | 2.6 | 2.4 | 0.16 | Ct-U | 90 | G | 200 | 26.1 | 575 | 0.022031 | 555,366 | 180,000 | |
G2-CFRP-1 | Rect | 196 | 250 | 100 | 196 | 1 | 1 | 1 | 2 | 23.5 | 2 | 2.4 | 0.16 | Ct-U | 90 | C | 200 | 95.8 | 986 | 0.010292 | 150,214 | 25,000 | |
G2-CFRP-2 | Rect | 442 | 500 | 200 | 442 | 2 | 1 | 2 | 2 | 23.5 | 2 | 2.4 | 0.16 | Ct-U | 90 | C | 200 | 95.8 | 986 | 0.010292 | 677,497 | 120,000 | |
[57] | |||||||||||||||||||||||
4 | Rect | 89 | 102 | 114 | 85 | 1.539 | 1 | 1.539 | 3.53 | 42.9 | 2.7 | 2.61 | 0 | Ct-U | 45 | G | 200 | 16.7 | 342.35 | 0.0205 | 25,879 | 31,500 | |
[58] | |||||||||||||||||||||||
CO2 | Rect | 260 | 305 | 150 | 260 | 0.165 | 1 | 0.165 | 3.6 | 20.5 | 0.088 | 4 | 0 | St-U | 90 | C | 200 | 228 | 3648 | 0.016 | 31,299 | 40,000 | |
CO3 | Rect | 260 | 305 | 150 | 260 | 0.165 | 1 | 0.165 | 3.6 | 20.5 | 0.22 | 4 | 0 | Ct-U | 90 | C | 200 | 228 | 3648 | 0.016 | 78,249 | 65,000 | |
[59] | |||||||||||||||||||||||
BT2 | T- | 260 | 100 | 305 | 150 | 360 | 0.165 | 1 | 0.165 | 3 | 35 | 0.22 | 2.28 | 0 | Ct-U | 90 | C | 200 | 228 | 3648 | 0.016 | 78,249 | 65,000 |
BT3 | T- | 260 | 100 | 305 | 150 | 360 | 0,165 | 1 | 0.165 | 3 | 35 | 0.44 | 2.28 | 0 | Ct-U | 90 | C | 200 | 228 | 3648 | 0.016 | 78,249 | 67,500 |
BT4 | T- | 260 | 100 | 305 | 150 | 360 | 0.165 | 1 | 0.165 | 3 | 35 | 0.088 | 2.28 | 0 | St-U | 90 | C | 200 | 228 | 3648 | 0.016 | 31,299 | 72,000 |
[60] | |||||||||||||||||||||||
SO3-2 | Rect | 260 | 305 | 150 | 260 | 0.165 | 1 | 0.165 | 3 | 27.5 | 0.088 | 4.2 | 0 | St-U | 90 | C | 200 | 228 | 3648 | 0.016 | 31,299 | 54,000 | |
SO3-3 | Rect | 260 | 305 | 150 | 260 | 0.165 | 1 | 0.165 | 3 | 27.5 | 0.132 | 4.2 | 0 | St-U | 90 | C | 200 | 228 | 3648 | 0.016 | 46,949 | 56,500 | |
SO3-4 | Rect | 260 | 305 | 150 | 260 | 0.165 | 1 | 0.165 | 3 | 27.5 | 0.22 | 4.2 | 0 | Ct-U | 90 | C | 200 | 228 | 3648 | 0.016 | 78,249 | 67,500 | |
SO4-2 | Rect | 260 | 305 | 150 | 260 | 0.165 | 1 | 0.165 | 4 | 27.5 | 0.088 | 4.2 | 0 | St-U | 90 | C | 200 | 228 | 3648 | 0,016 | 31,299 | 62,500 | |
[52] | |||||||||||||||||||||||
T6NS-C45 | T- | 390 | 150 | 450 | 140 | 540 | 0.7 | 1 | 0.7 | 2.9 | 44.1 | 2.6 | 2.81 | 0 | St-U | 45 | C | 200 | 230 | 3450 | 0.015 | 355,193 | 103,500 |
T6S4-C90 | T- | 390 | 150 | 450 | 140 | 540 | 0.7 | 1 | 0.7 | 2.9 | 44.1 | 0.08 | 2.81 | 0.1 | St-U | 90 | C | 200 | 230 | 3450 | 0.015 | 251,160 | 85,250 |
T6S4-G90 | T- | 390 | 150 | 450 | 140 | 540 | 1.8 | 1 | 1.8 | 2.9 | 44.1 | 2.6 | 2.81 | 0.1 | Ct-U | 90 | G | 200 | 17.7 | 265.5 | 0.015 | 99,403 | 109,900 |
T6S4-Tri | T- | 390 | 150 | 450 | 140 | 540 | 2.1 | 1 | 2.1 | 2.9 | 44.1 | 3 | 2.81 | 0.1 | Ct-U | 45 | G | 200 | 8.1 | 121.5 | 0.015 | 75,054 | 129,200 |
T4NS-G90 | T- | 190 | 150 | 450 | 140 | 340 | 1.8 | 1 | 1.8 | 3.2 | 29 | 2.6 | 4.46 | 0 | Ct-U | 90 | G | 200 | 17.7 | 265.5 | 0.015 | 48,427 | 43,600 |
T4S4-G90 | T- | 190 | 150 | 450 | 140 | 340 | 1.8 | 1 | 1.8 | 3.2 | 29 | 2.6 | 4.46 | 0.1 | Ct-U | 90 | G | 200 | 17.7 | 265.5 | 0.015 | 48,427 | 48,650 |
T4S2-C45 | T- | 190 | 150 | 450 | 140 | 340 | 0.7 | 1 | 0.7 | 3.2 | 29 | 0.08 | 4.46 | 0.2 | St-U | 45 | C | 200 | 230 | 3450 | 0.015 | 173,043 | 17,800 |
T4S2-G90 | T- | 190 | 150 | 450 | 140 | 340 | 1.8 | 1 | 1.8 | 3.2 | 29 | 2.6 | 4.46 | 0.2 | Ct-U | 90 | G | 200 | 17.7 | 265.5 | 0.015 | 48,427 | 24,350 |
T4S2-Tri | T- | 190 | 150 | 450 | 140 | 340 | 2.1 | 1 | 2.1 | 3.2 | 29 | 3 | 4.46 | 0.2 | Ct-U | 45 | G | 200 | 8.1 | 121.5 | 0.015 | 36,564 | 41,400 |
[61] | |||||||||||||||||||||||
G5.5-1L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.10902 | 1 | 0.10902 | 2 | 37.9 | 0.237 | 3.6 | 1.1 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 51,193 | 31,150 |
G5.5-2L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.21804 | 2 | 0.10902 | 2 | 37.9 | 0.475 | 3.6 | 1.1 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 102,386 | 53,400 |
G8-1L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.10902 | 1 | 0.10902 | 2 | 37.9 | 0.237 | 3.6 | 0.76 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 51,193 | 31,150 |
G8-2L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.21804 | 2 | 0.10902 | 2 | 37.9 | 0.475 | 3.6 | 0.76 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 102,386 | 62,300 |
G8-3L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.32706 | 3 | 0.10902 | 2 | 37.9 | 0.712 | 3.6 | 0.76 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 153,579 | 84,550 |
G16-1L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.10902 | 1 | 0.10902 | 2 | 37.9 | 0.237 | 3.6 | 0.38 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 51,193 | 40,050 |
G16-2L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.21804 | 2 | 0.10902 | 2 | 37.9 | 0.475 | 3.6 | 0.38 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 102,386 | 84,550 |
G24-1L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.10902 | 1 | 0.10902 | 2 | 37.9 | 0.237 | 3.6 | 0.25 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 51,193 | 53,400 |
G24-2L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.21804 | 2 | 0.10902 | 2 | 37.9 | 0.475 | 3.6 | 0.25 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 102,386 | 48,950 |
G24-3L | T- | 254.1 | 88.9 | 355.6 | 92 | 343 | 0.32706 | 3 | 0.10902 | 2 | 37.9 | 0.712 | 3.6 | 0.25 | Ct-U | 90 | C | 203 | 231 | 3696 | 0.016 | 153,579 | 53,400 |
References
- Tan, P. Ballistic protection performance of curved armor systems with or without debondings/delaminations. Mater. Design 2014, 64, 25–34. [Google Scholar] [CrossRef]
- Kolanu, N.R.; Raju, G.; Ramji, M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Compos. Part B Eng. 2020, 190, 107931. [Google Scholar] [CrossRef]
- Rozylo, P. Failure analysis of thin-walled composite structures using independent advanced damage models. Compos. Struct. 2021, 262, 113598. [Google Scholar] [CrossRef]
- Kaliakin, V.N.; Chajes, M.J.; Januszka, T.F. Analysis of concrete beams reinforced with externally bonded woven composite fabrics. Compos. Part B Eng. 1996, 27, 235–244. [Google Scholar] [CrossRef]
- Arduini, M.; Di Tommaso, A.; Nanni, A. Brittle failure in FRP plate and sheet bonded beams. ACI Struct. J. 1997, 94, 363–370. [Google Scholar]
- Amir, M. Analytical study of reinforced concrete beams strengthened with web-bonded fiber reinforced plastic plates or fabrics. ACI Struct. J. 1998, 95, 12–16. [Google Scholar]
- Vecchio, F.; Bucci, F. Analysis of repaired reinforced concrete structures. J. Struct. Eng. 1999, 125, 644–652. [Google Scholar] [CrossRef]
- Lee, T.K.; Al-Mahaidi, R.S.H.; Taplin, G.R. Non-linear finite element modelling of shear-damaged concrete T-beams repaired with CFRP laminates. In Proceedings of the ACUN-2 International Composites Conference, Sydney, Australia, 14–18 February 2000; pp. 253–258. [Google Scholar]
- Kachlakev, D.I.; Miller, T.H.; Potisuk, T.; Yim, S.C.; Chansawat, K. Finite Element Modeling of Reinforced Concrete Structures Strengthened with FRP Laminates; Oregon Department of Transportation Research Group: Klamath Falls, OR, USA, 2001.
- Santhakumar, R.; Chandrasekaran, E.; Dhanaraj, R. Analysis of retrofitted reinforced concrete shear beams using carbon fiber composites. Electron. J. Struct. Eng. 2004, 4, 66–74. [Google Scholar]
- Elyasian, I.; Abdoli, N.; Rounagh, H. Evaluation of parameters effective in FRP shear strengthening of RC beams using FE method. Asian J. Civ. Eng. 2006, 7, 249–257. [Google Scholar]
- Godat, A.; Chaallal, O.; Neale, K.W. Nonlinear finite element models for the embedded through-section FRP shear-strengthening method. Comput. Struct. 2013, 119, 12–22. [Google Scholar] [CrossRef]
- Qapo, M.; Dirar, S.; Jemaa, Y. Finite element parametric study of reinforced concrete beams shear-strengthened with embedded FRP bars. Compos. Struct. 2016, 149, 93–105. [Google Scholar] [CrossRef]
- Shomali, A.; Mostofinejad, D.; Esfahani, M.R. Effective strain of CFRP in RC beams strengthened in shear with NSM reinforcements. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 635–645. [Google Scholar]
- Wong, R.S.; Vecchio, F.J. Towards modeling of reinforced concrete members with externally bonded fiber-reinforced polymer composites. ACI Struct. J. 2003, 100, 47–55. [Google Scholar]
- Smith, S.T.; Otoom, O.; Foster, S. Finite element modelling of RC beams strengthened in shear with FRP composites. In Proceedings of the 2nd International Fib Congress, Naples, Italy, 5–8 June 2006. [Google Scholar]
- Qu, Z.; Lu, X.-Z.; Ye, L.-P.; Chen, J.-F.; Rotter, J.M. Numerical modeling of FRP shear strengthened RC beams using compression field theory. In Proceedings of the Third International Conference on FRP Composites in Civil Engineering (CICE 2006), Miami, FL, USA, 13–15 December 2006; pp. 391–394. [Google Scholar]
- Godat, A.; Neale, K.W.; Labossière, P. Numerical modeling of FRP shear-strengthened reinforced concrete beams. J. Compos. Constr. 2007, 11, 640–649. [Google Scholar] [CrossRef]
- Godat, A.; Labossière, P.; Neale, K. Numerical prediction of shear crack angles for FRP shear-strengthened concrete beams. In Proceedings of the 4th International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, 22–24 July 2008; p. 6. [Google Scholar]
- Lee, H.-K.; Ha, S.-K.; Afzal, M. Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets. Struct. Eng. Mech. 2008, 30, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Chen, J.; Ye, L.; Teng, J.; Rotter, J. RC beams shear-strengthened with FRP: Stress distributions in the FRP reinforcement. Constr. Build. Mater. 2009, 23, 1544–1554. [Google Scholar] [CrossRef]
- Chen, G.; Teng, J.; Chen, J.; Rosenboom, O. Interaction between steel stirrups and shear-strengthening FRP strips in RC beams. J. Compos. Constr. 2010, 14, 498–509. [Google Scholar] [CrossRef]
- You, Y.-M.; Ayoub, A.; Belarbi, A. Three-dimensional nonlinear finite-element analysis of prestressed concrete beams strengthened in shear with FRP composites. J. Compos. Constr. 2011, 15, 896–907. [Google Scholar] [CrossRef]
- Dirar, S.; Lees, J.M.; Morley, C. Phased nonlinear finite-element analysis of precracked RC T-beams repaired in shear with CFRP sheets. J. Compos. Constr. 2012, 17, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Godat, A.; Labossière, P.; Neale, K. Numerical investigation of the parameters influencing the behaviour of FRP shear-strengthened beams. Constr. Build. Mater. 2012, 32, 90–98. [Google Scholar] [CrossRef]
- Godat, A.; Labossière, P.; Neale, K.W.; Chaallal, O. Behavior of RC members strengthened in shear with EB FRP: Assessment of models and FE simulation approaches. Comput. Struct. 2012, 92, 269–282. [Google Scholar] [CrossRef]
- Imperatore, S.; Lavorato, D.; Nuti, C.; Santini, S.; Sguerri, L. Numerical modeling of existing RC beams strengthened in shear with FRP U-sheets. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering—CICE2012, Rome, Italy, 13–15 June 2012; pp. 13–15. [Google Scholar]
- Sayed, A.M.; Wang, X.; Wu, Z. Modeling of shear capacity of RC beams strengthened with FRP sheets based on FE simulation. J. Compos. Constr. 2013, 17, 687–701. [Google Scholar] [CrossRef]
- Manos, G.; Theofanous, M.; Katakalos, K. Numerical simulation of the shear behaviour of reinforced concrete rectangular beam specimens with or without FRP-strip shear reinforcement. Adv. Eng. Softw. 2014, 67, 47–56. [Google Scholar] [CrossRef]
- Qapo, M.; Dirar, S.; Yang, J.; Elshafie, M.Z. Nonlinear finite element modelling and parametric study of CFRP shear-strengthened prestressed concrete girders. Constr. Build. Mater. 2015, 76, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Ibars, E.O.; Ferreira, D.; Bernat, A.M.; García, J.M.B. Numerical analysis of reinforced concrete beams strengthened in shear by externally bonded (EB) fibre reinforced polymer (FRP) sheets. Hormigón Acero 2018, 69, 113–120. [Google Scholar] [CrossRef]
- Al Jawahery, M.S.; Gulsan, M.E.; Albegmprli, H.M.; Mansoori, I.A.H.; Cevik, A. Experimental investigation of rehabilitated RC haunched beams via CFRP with 3D-FE modeling analysis. Eng. Struct. 2019, 196, 109301. [Google Scholar] [CrossRef]
- Jin, L.; Xia, H.; Xuan-Ang, J.; Du, X. Size effect on shear failure of CFRP-strengthened concrete beams without web reinforcement: Meso-scale simulation and formulation. Compos. Struct. 2020, 236, 111895. [Google Scholar] [CrossRef]
- Godat, A.; Qu, Z.; Lu, X.; Labossiere, P.; Ye, L.; Neale, K.W. Size effects for reinforced concrete beams strengthened in shear with CFRP strips. J. Compos. Constr. 2010, 14, 260–271. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Teng, J. On the finite element modelling of RC beams shear-strengthened with FRP. Constr. Build. Mater. 2012, 32, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Kani, G.N.J. How safe are our large reinforced concrete beams? J. Proc. 1967, 64, 128–141. [Google Scholar]
- Bazant, Z.P.; Kazemi, M.T. Size effect on diagonal shear failure of beams without stirrups. ACI Struct. J. 1991, 88, 268–276. [Google Scholar]
- Collins, M.P.; Kuchma, D. How safe are our large, lightly reinforced concrete beams, slabs, and footings? Struct. J. 1999, 96, 482–490. [Google Scholar]
- Benzeguir, Z.E.A.; El-Saikaly, G.; Chaallal, O. Size effect in RC T-beams strengthened in shear with externally bonded CFRP sheets: Experimental study. J. Compos. Constr. 2019, 23, 04019048. [Google Scholar] [CrossRef]
- Chen, G. Behaviour and Strength of RC Beams Shear-Strengthened with Externally Bonded FRP Reinforcement. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2010. [Google Scholar]
- Bažant, Z.P.; Becq-Giraudon, E. Statistical prediction of fracture parameters of concrete and implications for choice of testing standard. Cem. Concr. Res. 2002, 32, 529–556. [Google Scholar] [CrossRef]
- Hordijk, D. Local Approach to Fatigue of Concrete. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1991. [Google Scholar]
- Saenz, L.P. Discussion of “Equation for the Stress-Strain Curve of Concrete” by Desayi and Krishnan. J. Am. Concr. Inst. 1964, 61, 1229–1235. [Google Scholar]
- ACI Committee. Building Code Requirements for Reinforced Concrete (ACI 318–63); American Concrete Institute: Indianapolis, IN, USA, 1963. [Google Scholar]
- Tao, Y.; Chen, J.-F. Concrete damage plasticity model for modeling FRP-to-concrete bond behavior. J. Compos. Constr. 2014, 19, 04014026. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.T.; Pham, T.M.; Hao, H.; Chen, W. Numerical investigation of flexural behaviours of precast segmental concrete beams internally post-tensioned with unbonded FRP tendons under monotonic loading. Eng. Struct. 2021, 249, 113341. [Google Scholar] [CrossRef]
- Tran, D.T.; Pham, T.M.; Hao, H.; Chen, W. Numerical study on bending response of precast segmental concrete beams externally prestressed with FRP tendons. Eng. Struct. 2021, 241, 112423. [Google Scholar] [CrossRef]
- Lu, X.; Teng, J.; Ye, L.; Jiang, J. Bond–slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
- Pellegrino, C.; Modena, C. Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. J. Compos. Constr. 2002, 6, 104–111. [Google Scholar] [CrossRef]
- Chen, J.-F.; Teng, J. Shear capacity of FRP-strengthened RC beams: FRP debonding. Constr. Build. Mater. 2003, 17, 27–41. [Google Scholar] [CrossRef]
- Chen, J.; Teng, J. Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: Fiber reinforced polymer rupture. J. Struct. Eng. 2003, 129, 615–625. [Google Scholar] [CrossRef]
- Deniaud, C.; Cheng, J.R. Shear behavior of reinforced concrete T-beams with externally bonded fiber-reinforced polymer sheets. Struct. J. 2001, 98, 386–394. [Google Scholar]
- Leung, C.K.; Chen, Z.; Lee, S.; Ng, M.; Xu, M.; Tang, J. Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips. J. Compos. Constr. 2007, 11, 487–496. [Google Scholar] [CrossRef]
- Bae, S.; Tann, B.; Belarbi, A. Size effect of reinforced concrete beams strengthened in shear with externally bonded CFRP sheets. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), Rome, Italy, 13–15 June 2012; pp. 1–8. [Google Scholar]
- Bousselham, A.; Chaallal, O. Experimental investigations on the influence of size on the performance of RC T-beams retrofitted in shear with CFRP fabrics. Eng. Struct. 2013, 56, 1070–1079. [Google Scholar] [CrossRef]
- Nguyen-Minh, L.; Rovňák, M. Size effect in uncracked and pre-cracked reinforced concrete beams shear-strengthened with composite jackets. Compos. Part B Eng. 2015, 78, 361–376. [Google Scholar] [CrossRef]
- Berset, J.-D. Strengthening of Reinforced Concrete Beams for Shear Using FRP Composites; Massachusetts Institute of Technology: Cambridge, MA, USA, 1992. [Google Scholar]
- Khalifa, A.; Tumialan, G.; Nanni, A.; Belarbi, A. Shear strengthening of continuous RC beams using externally bonded CFRP sheets. In Proceedings of the 4th International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS4), Baltimore, MD, USA, 31 October–5 November 1999; pp. 995–1008. [Google Scholar]
- Khalifa, A.; Nanni, A. Improving shear capacity of existing RC T-section beams using CFRP composites. Cem. Concr. Compos. 2000, 22, 165–174. [Google Scholar] [CrossRef]
- Khalifa, A.; Nanni, A. Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites. Constr. Build. Mater. 2002, 16, 135–146. [Google Scholar] [CrossRef]
- Chaallal, O.; Shahawy, M.; Hassan, M. Performance of reinforced concrete T-girders strengthened in shear with carbon fiber-reinforced polymer fabric. Struct. J. 2002, 99, 335–343. [Google Scholar]
Series | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
S0-Con | S0–1L | S0–2L | ||||||||
Specimen | S.S0.Con | M.S0.Con | L.S0.Con | S.S0.1L | M.S0.1L | L.S0.1L | S.S0.2L | M.S0.2L | L.S0.2L | |
Concrete | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | |
a/d | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
Beam length, mm | 3000 | 4520 | 6400 | 3000 | 4520 | 6400 | 3000 | 4520 | 6400 | |
Flange height, hf, mm | 55 | 102 | 150 | 55 | 102 | 150 | 55 | 102 | 150 | |
Flange width, bf, mm | 270 | 508 | 745 | 270 | 508 | 745 | 270 | 508 | 745 | |
Web height, hw, mm | 165 | 304 | 455 | 165 | 304 | 455 | 165 | 304 | 455 | |
Web width, bw, mm | 95 | 152 | 275 | 95 | 152 | 275 | 95 | 152 | 275 | |
Shear span | 525 | 1050 | 1575 | 525 | 1050 | 1575 | 525 | 1050 | 1575 | |
Steel Bars | Tensile bars | 2 × M15 + 2 × M10 | 4 × M25 | 6 × M30 + 2 × M25 | 2 × M15 + 2 × M10 | 4 × M25 | 6 × M30 + 2 × M25 | 2 × M15 + 2 × M10 | 4 × M25 | 6 × M30 + 2 × M25 |
Tensile yielding stress, MPa | 420–440 | 470 | 420–470 | 420–440 | 470 | 420–470 | 420–440 | 470 | 420–470 | |
Modulus of elasticity Es, GPa (T) | 175–200 | 200 | 210–200 | 175–200 | 200 | 210–200 | 175–200 | 200 | 210–200 | |
Compressive bars | 4 × ϕ8 | 6 × M10 | 6 × M10 | 4 × ϕ8 | 6 × M10 | 6 × M10 | 4 × ϕ8 | 6 × M10 | 6 × M10 | |
Compressive yielding stress, MPa | 650 | 440 | 440 | 650 | 440 | 440 | 650 | 440 | 440 | |
Modulus of elasticity Es, GPa (C) | 215 | 200 | 200 | 215 | 200 | 200 | 215 | 200 | 200 | |
CFRP Fabrics | Configuration | - | - | - | Ct-U | Ct-U | Ct-U | Ct-U | Ct-U | Ct-U |
Thickness of fabrics, tCFRP, mm | - | - | - | 0.066 | 0.107 | 0.167 | 0.132 | 0.214 | 0.334 | |
Modulus of elasticity Ef, GPa | - | - | - | 231 | 231 | 234 | 231 | 231 | 234 | |
Tensile strength, MPa | - | - | - | 3650 | 3650 | 3793 | 3650 | 3650 | 3793 | |
Number of layers | - | - | - | 1 | 1 | 1 | 2 | 2 | 2 |
Imposed Load | |||||
---|---|---|---|---|---|
Experimental Test | Numerical Prediction | ||||
Specimen | Failure Load (kN) | Shear Cracks (kN) | Failure Load (kN) | Shear Cracks (kN) | Pnum./Pexp. |
S.S0.Con | 58 | 19 (31%) | 62 | 25 (40%) | 1.06 |
M.S0.Con | 130 | 45 (35%) | 128 | 60 (46%) | 0.98 |
L.S0.Con | 283 | 73 (25%) | 293 | 89 (30%) | 1.03 |
Pmax(kN) | ΔPmax(mm) | VT(kN) | VCFRP(kN) | Pnum/Pmax | Failure Mode | ||||||
Specimens | Exp. | Num. | Exp. | Num. | Exp. | Num. | Exp. | Num. | Exp. | Num. | |
S.S0.Con | 58 | 62 | 1.8 | 1.9 | 38 | 41 | - | - | 1.06 | Shear | Shear |
M.S0.Con | 130 | 128 | 2.6 | 3.1 | 86 | 85 | - | - | 0.98 | Shear | Shear |
L.S0.Con | 283 | 293 | 3.7 | 4 | 182 | 189 | - | - | 1.03 | Shear | Shear |
S.S0.1L | 93 | 98 | 5.4 | 5.2 | 62 | 65 | 23 | 24 | 1.05 | Shear | Shear |
M.S0.1L | 189 | 195 | 4.2 | 3.9 | 125 | 130 | 39 | 45 | 1.03 | Shear | Shear |
L.S0.1L | 518 | 550 | 7.1 | 7.2 | 334 | 354 | 151 | 165 | 1.06 | Shear | Shear |
S.S0.2L | 106 | 112 | 4.9 | 4.23 | 71 | 75 | 32 | 34 | 1.05 | Shear | Shear |
M.S0.2L | 191 | 202 | 4.1 | 4.8 | 127 | 134 | 40 | 49 | 1.05 | Shear | Shear |
L.S0.2L | 506 | 543 | 7.5 | 8 | 326 | 349 | 144 | 160 | 1.07 | Shear | Shear |
Shear Gain Due to FRP (%) | Shear Stress in Concrete | Loss in Shear Stress with Respect to Control Beam (ν%) | ||||
---|---|---|---|---|---|---|
Specimens | Exp. | Num. | Exp. | Num. | Exp. | Num. |
S.S0.Con | - | - | 2.31 | 2.46 | - | - |
M.S0.Con | - | - | 1.62 | 1.59 | 30 | 35 |
L.S0.Con | - | - | 1.26 | 1.31 | 45 | 47 |
S.S0.1L | 60 | 58 | 3.71 | 3.91 | - | - |
M.S0.1L | 45 | 52 | 2.35 | 2.44 | 37 | 38 |
L.S0.1L | 83 | 87 | 2.31 | 2.45 | 38 | 37 |
S.S0.2L | 84 | 83 | 4.26 | 4.51 | - | - |
M.S0.2L | 47 | 58 | 2.38 | 2.51 | 44 | 44 |
L.S0.2L | 79 | 85 | 2.26 | 2.41 | 47 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, A.; Benzeguir, Z.E.A.; Chaallal, O.; El-Saikaly, G. FE Modelling and Simulation of the Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded FRP Fabrics. J. Compos. Sci. 2022, 6, 116. https://doi.org/10.3390/jcs6040116
Abbasi A, Benzeguir ZEA, Chaallal O, El-Saikaly G. FE Modelling and Simulation of the Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded FRP Fabrics. Journal of Composites Science. 2022; 6(4):116. https://doi.org/10.3390/jcs6040116
Chicago/Turabian StyleAbbasi, Amirali, Zine El Abidine Benzeguir, Omar Chaallal, and Georges El-Saikaly. 2022. "FE Modelling and Simulation of the Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded FRP Fabrics" Journal of Composites Science 6, no. 4: 116. https://doi.org/10.3390/jcs6040116
APA StyleAbbasi, A., Benzeguir, Z. E. A., Chaallal, O., & El-Saikaly, G. (2022). FE Modelling and Simulation of the Size Effect of RC T-Beams Strengthened in Shear with Externally Bonded FRP Fabrics. Journal of Composites Science, 6(4), 116. https://doi.org/10.3390/jcs6040116