Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Sample Characterization
3. Results and Discussion
3.1. Characterization of the Powder Materials
3.2. Mechanical Properties
3.3. Thermal Properties
3.4. Electrical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Hone, J.; Stormer, H.L.; Kim, P. Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Saritha, A.; Malhotra, S.K.; Thomas, S.; Joseph, K.; Goda, K.; Sreekala, M.S. State of the Art—Nanomechanics. In Polymer Composites: Volume 2: Nanocomposites, 1st ed.; Thomas, S., Joseph, K., Malhotra, S.K., Goda, K., Sreekala, M.S., Eds.; Wiley-VCH: Weinheim, Germany, 2013; pp. 1–12. [Google Scholar]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef]
- Tkachev, S.V.; Buslaeva, E.Y.; Gubin, S.P. Graphene: A novel carbon nanomaterial. Inorg. Mater. 2011, 47, 1–10. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Warner, J.H. Reduced Graphene Oxide. In Graphene: Fundamentals and Emergent Applications, 1st ed.; Warner, J.H., Schäffel, F., Rümmeli, M.H., Bachmatiuk, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 155–163. [Google Scholar]
- Backes, C.; Abdelkader, A.M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 22001. [Google Scholar] [CrossRef]
- Wang, F.; Drzal, L.T.; Qin, Y.; Huang, Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 2015, 50, 1082–1093. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Alam, A.; Wan, C.; McNally, T. Surface amination of carbon nanoparticles for modification of epoxy resins: Plasma-treatment vs. wet-chemistry approach. Eur. Polym. J. 2017, 87, 422–448. [Google Scholar] [CrossRef]
- Li, Z.; Chu, J.; Yang, C.; Hao, S.; Bissett, M.A.; Kinloch, I.A.; Young, R.J. Effect of functional groups on the agglomeration of graphene in nanocomposites. Compos. Sci. Technol. 2018, 163, 116–122. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Ma, J.; Meng, Q.; Zaman, I.; Zhu, S.; Michelmore, A.; Kawashima, N.; Wang, C.H.; Kuan, H.-C. Development of polymer composites using modified, high-structural integrity graphene platelets. Compos. Sci. Technol. 2014, 91, 82–90. [Google Scholar] [CrossRef]
- Ahmadi-Moghadam, B.; Sharafimasooleh, M.; Shadlou, S.; Taheri, F. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 2015, 66, 142–149. [Google Scholar] [CrossRef]
- Fang, H.; Bai, S.-L.; Wong, C.P. Microstructure engineering of graphene towards highly thermal conductive composites. Compos. A 2018, 112, 216–238. [Google Scholar] [CrossRef]
- Schürmann, H. Konstruieren mit Faser-Kunststoff-Verbunden, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Pascault, J.-P.; Williams, R.J.J. General Concepts about Epoxy Polymers. In Epoxy Polymers: New Materials and Innovations, 1st ed.; Pascault, J.-P., Williams, R.J.J., Eds.; Wiley-VCH: Weinheim, Germany, 2010; pp. 1–12. [Google Scholar]
- Hirsch, A.; Englert, J.M.; Hauke, F. Wet chemical functionalization of graphene. Acc. Chem. Res. 2013, 46, 87–96. [Google Scholar] [CrossRef]
- Park, J.; Yan, M. Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2013, 46, 181–189. [Google Scholar] [CrossRef]
- Paredes, J.; Martínez-Alonso, A.; Tascón, J.M.D. Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces. J. Colloid. Interface Sci. 2003, 258, 276–282. [Google Scholar] [CrossRef]
- Bertóti, I.; Mohai, M.; László, K. Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy. Carbon 2015, 84, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, N. Plasma Surface Modification and Plasma Polymerization, 1st ed.; Technomic Publishing: Lancaster, UK, 1996. [Google Scholar]
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods. Phys. Res. Sect. B 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Qin, H.; Sun, Y.; Liu, J.Z.; Liu, Y. Mechanical properties of wrinkled graphene generated by topological defects. Carbon 2016, 108, 204–214. [Google Scholar] [CrossRef]
- Mirabedini, A.; Ang, A.; Nikzad, M.; Fox, B.; Lau, K.; Hameed, N. Evolving Strategies for Producing Multiscale Graphene-Enhanced Fiber-Reinforced Polymer Composites for Smart Structural Applications. Adv. Sci. 2020, 7, 1903501. [Google Scholar] [CrossRef] [Green Version]
- Shahil, K.M.F.; Balandin, A.A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Silva, A.A.; Stein, R.; Campos, D.; Indrusiak, T.; Soares, B.G.; Barra, G.M.O. Conducting Materials Based on Epoxy/Graphene Nanoplatelet Composites With Microwave Absorbing Properties: Effect of the Processing Conditions and Ionic Liquid. Front. Mater. 2019, 6, 156. [Google Scholar] [CrossRef]
- Balaji, R.; Sasikumar, R.; Sasikumar, M. Graphene based strain and damage prediction system for polymer composites. Compos. A 2017, 103, 48–59. [Google Scholar] [CrossRef]
- Reghat, M.; Mirabedini, A.; Tan, A.M.; Weizman, Y.; Middendorf, P.; Bjekovic, R.; Hyde, L.; Antiohos, D.; Hameed, N.; Fuss, F.K.; et al. Graphene as a piezo-resistive coating to enable strain monitoring in glass fiber composites. Compos. Sci. Technol. 2021, 211, 108842. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e.V. Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics; 83.080.01 (DIN EN ISO 527-2); Beuth Verlag: Berlin, Germany, 2012. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Aerospace—Fibre Reinforced Materials—Determination of Glass Transition of Fibre Composites under Dynamic Load; 49.025.40 (DIN 65583); Beuth Verlag: Berlin, Germany, 1999. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Plastics—Differential Scanning Calorimetry (DSC)—Part 4: Determination of Specific Heat Capacity; 83.080.01 (DIN EN ISO 11357-4); Beuth Verlag: Berlin, Germany, 2021. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 4: Laser Flash Method; 83.080.01 (DIN EN ISO 22007-4); Beuth Verlag: Berlin, Germany, 2017. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Testing of Plastics; Determination of the Coefficient of Linear Thermal Expansion; 83.080.01 (DIN 53752); Beuth Verlag: Berlin, Germany, 1980. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-1: Determination of Resistive Properties (DC Methods)—Volume Resistance and Volume Resistivity—General Method (IEC 62631-3-1:2016); 29.035.01 (DIN EN 62631-3-1 (VDE 0307-3-1)); Beuth Verlag: Berlin, Germany, 2017. [Google Scholar]
- Goldstein, J.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis, 4th ed.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Jalili, R.; Esrafilzadeh, D.; Aboutalebi, S.H.; Sabri, Y.M.; Kandjani, A.E.; Bhargava, S.K.; Della Gaspera, E.; Gengenbach, T.R.; Walker, A.; Chao, Y.; et al. Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance. Nat. Commun. 2018, 9, 5070. [Google Scholar] [CrossRef]
- Hofmann, D.; Wartig, K.-A.; Thomann, R.; Dittrich, B.; Schartel, B.; Mülhaupt, R. Functionalized Graphene and Carbon Materials as Additives for Melt-Extruded Flame Retardant Polypropylene. Macromol. Mater. Eng. 2013, 298, 1322–1334. [Google Scholar] [CrossRef]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73. [Google Scholar] [CrossRef] [Green Version]
- Boukhvalov, D.W.; Katsnelson, M.I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M.; et al. All in the graphene family—A recommended nomenclature for two-dimensional carbon materials. Carbon 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Vacchi, I.A.; Ménard-Moyon, C.; Bianco, A. Chemical Functionalization of Graphene Family Members. Phys. Sci. Rev. 2017, 2, 20160103. [Google Scholar] [CrossRef]
- Tschoppe, K.; Beckert, F.; Beckert, M.; Mülhaupt, R. Thermally Reduced Graphite Oxide and Mechanochemically Functionalized Graphene as Functional Fillers for Epoxy Nanocomposites. Macromol. Mater. Eng. 2015, 300, 140–152. [Google Scholar] [CrossRef]
- Zang, J.; Wan, Y.-J.; Zhao, L.; Tang, L.-C. Fracture Behaviors of TRGO-Filled Epoxy Nanocomposites with Different Dispersion/Interface Levels. Macromol. Mater. Eng. 2015, 300, 737–749. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction, 6th ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Prolongo, M.G.; Salom, C.; Arribas, C.; Sánchez-Cabezudo, M.; Masegosa, R.M.; Prolongo, S.G. Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites. J. Therm. Anal. Calorim. 2016, 125, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Trusiano, G.; Matta, S.; Bianchi, M.; Rizzi, L.G.; Frache, A. Evaluation of nanocomposites containing graphene nanoplatelets: Mechanical properties and combustion behavior. Polym. Eng. Sci. 2019, 59, 2062–2071. [Google Scholar] [CrossRef]
- Salom, C.; Prolongo, M.G.; Toribio, A.; Martínez-Martínez, A.J.; de Cárcer, I.A.; Prolongo, S.G. Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites. Int. J. Adhes. Adhes. 2018, 84, 119–125. [Google Scholar] [CrossRef]
- Park, Y.T.; Qian, Y.; Chan, C.; Suh, T.; Nejhad, M.G.; Macosko, C.W.; Stein, A. Epoxy Toughening with Low Graphene Loading. Adv. Funct. Mater. 2015, 25, 575–585. [Google Scholar] [CrossRef]
- Eqra, R.; Moghim, M.H. Effect of strain rate on the fracture behaviour of epoxy–graphene nanocomposite. Bull. Mater. Sci. 2016, 39, 1197–1204. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, A.C.; Carosella, S.; Rettenmayr, M.; Fox, B.L.; Middendorf, P. Rheology, dispersion, and cure kinetics of epoxy filled with amine- and non-functionalized reduced graphene oxide for composite manufacturing. J. Appl. Polym. Sci. 2022, 139, e51664. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, Z.; Li, J.; Zhang, H.; Lu, H.; Yang, Y. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 2010, 20, 9635. [Google Scholar] [CrossRef]
- Bashir, M.A. Use of Dynamic Mechanical Analysis (DMA) for Characterizing Interfacial Interactions in Filled Polymers. Solids 2021, 2, 108–120. [Google Scholar] [CrossRef]
- Panwar, V.; Pal, K. Dynamic Mechanical Analysis of Clay–Polymer Nanocomposites. In Clay-Polymer Nanocomposites, 1st ed.; Jlassi, K., Chehimi, M.M., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 413–441. [Google Scholar]
- Li, Y.; Zhang, H.; Porwal, H.; Huang, Z.; Bilotti, E.; Peijs, T. Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos. A 2017, 95, 229–236. [Google Scholar] [CrossRef]
- Kim, H.S.; Bae, H.S.; Yu, J.; Kim, S.Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 2016, 6, 26825. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Wang, J.W.; Kuo, W.S.; Tai, N.H.; Salzmann, C.; Li, W.L.; Hollertz, R.; Nüesch, F.A.; Chu, B. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem. Phys. Lett. 2012, 531, 6–10. [Google Scholar] [CrossRef]
- Olowojoba, G.B.; Eslava, S.; Gutierrez, E.S.; Kinloch, A.J.; Mattevi, C.; Rocha, V.G.; Taylor, A.C. In situ thermally reduced graphene oxide/epoxy composites: Thermal and mechanical properties. Appl. Nanosc. 2016, 6, 1015–1022. [Google Scholar] [CrossRef]
- Ganguli, S.; Roy, A.K.; Anderson, D.P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008, 46, 806–817. [Google Scholar] [CrossRef]
- Pollack, G.L. Kapitza Resistance. Rev. Mod. Phys. 1969, 41, 48–81. [Google Scholar] [CrossRef]
- Pop, E.; Varshney, V.; Roy, A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects. Chem. Mater. 2015, 27, 2100–2106. [Google Scholar] [CrossRef]
- Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites. J. Phys. Chem. C 2012, 116, 13629–13639. [Google Scholar] [CrossRef]
- Yao, H.; Hawkins, S.A.; Sue, H.-J. Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos. Sci. Technol. 2017, 146, 161–168. [Google Scholar] [CrossRef]
- Huh, S.H.; Choi, S.-H.; Ju, H.-M.; Kim, D.-H. Properties of interlayer thermal expansion of 6-layered reduced graphene oxide. J. Korean Phys. Soc. 2014, 64, 615–618. [Google Scholar] [CrossRef]
- Wang, S.; Tambraparni, M.; Qiu, J.; Tipton, J.; Dean, D. Thermal Expansion of Graphene Composites. Macromolecules 2009, 42, 5251–5255. [Google Scholar] [CrossRef]
- Seong, M.; Kim, D.S. Effects of facile amine-functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites. J. Appl. Polym. Sci. 2015, 132, 42269. [Google Scholar] [CrossRef]
- Chhetri, S.; Adak, N.C.; Samanta, P.; Murmu, N.C.; Kuila, T. Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability. Polym. Test. 2017, 63, 1–11. [Google Scholar] [CrossRef]
- Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.-K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480–5487. [Google Scholar] [CrossRef]
- Morimoto, N.; Kubo, T.; Nishina, Y. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications. Sci. Rep. 2016, 6, 21715. [Google Scholar] [CrossRef]
- Meng, Q.-L.; Liu, H.-C.; Huang, Z.; Kong, S.; Lu, X.; Tomkins, P.; Jiang, P.; Bao, X. Mixed conduction properties of pristine bulk graphene oxide. Carbon 2016, 101, 338–344. [Google Scholar] [CrossRef]
- Colonna, S.; Monticelli, O.; Gomez, J.; Novara, C.; Saracco, G.; Fina, A. Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites. Polymer 2016, 102, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Licari, J.J. Coating Materials for Electronic Applications: Polymers, Processes, Reliability, Testing, 1st ed.; Noyes Publications: Norwich, UK; William Andrew Publication: Norwich, UK, 2003. [Google Scholar]
Cycle Number | Width of First Gap (µm) | Width of Second Gap (µm) |
---|---|---|
1 | 90 | 30 |
2 | 90 | 30 |
3 | 60 | 20 |
4 | 60 | 20 |
5 | 30 | 10 |
6 | 30 | 10 |
7 | 15 | 5 |
8 | 15 | 5 |
Powder Material | Elemental Composition (At%) | Atomic C/O Ratio | |||||
---|---|---|---|---|---|---|---|
C | O | Si | S | Ca | N | ||
graphite | 96.7 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 29.3/1 |
rGO | 84.2 | 15.1 | 0.1 | 0.3 | 0.2 | 0.0 | 5.6/1 |
frGO | 89.3 | 10.3 | 0.0 | 0.4 | 0.0 | 0.0 | 8.7/1 |
Powder Material | Elemental Composition (At%) | Atomic C/O Ratio | |||||
---|---|---|---|---|---|---|---|
C | O | Si | S | Ca | N | ||
graphite | 96.0 ± 1.5 | 3.5 ± 1.5 | 0.2 ± 0.2 | 0.0 ± 0.0 | 0.3 ± 0.3 | 0.0 ± 0.0 | 27.4/1 |
rGO | 86.8 ± 0.1 | 13.2 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 6.6/1 |
frGO | 88.6 ± 0.7 | 10.1 ± 0.7 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.1 | 1.2 ± 0.1 | 8.8/1 |
Material | Young’s Modulus E | Ultimate Tensile Strength UTS | Strain at Break εb | Modulus of Toughness UT | ||||
---|---|---|---|---|---|---|---|---|
(GPa) | (%) | (MPa) | (%) | (%) | (%) | (MJ m−3) | (%) | |
Neat polymer | 3.05 ± 0.05 | - | 72.46 ± 0.11 | - | 7.95 ± 0.60 | - | 4.56 ± 0.37 | - |
0.25 wt% rGO | 3.07 ± 0.02 | 0 | 65.98 ± 0.69 | −9 | 3.34 ± 0.08 | −58 | 1.37 ± 0.06 | −70 |
0.25 wt% frGO | 3.04 ± 0.03 | 0 | 64.07 ± 0.81 | −12 | 3.11 ± 0.16 | −61 | 1.22 ± 0.10 | −73 |
0.50 wt% rGO | 3.10 ± 0.03 | 1 | 58.43 ± 2.18 | −19 | 2.53 ± 0.20 | −68 | 0.87 ± 0.11 | −81 |
0.50 wt% frGO | 3.06 ± 0.04 | 0 | 50.72 ± 4.84 | −30 | 2.03 ± 0.29 | −74 | 0.59 ± 0.14 | −87 |
0.75 wt% rGO | 3.18 ± 0.05 | 4 | 52.11 ± 4.20 | −28 | 2.08 ± 0.27 | −74 | 0.62 ± 0.14 | −86 |
0.75 wt% frGO | 3.32 ± 0.05 | 9 | 53.78 ± 1.75 | −26 | 2.11 ± 0.13 | −74 | 0.65 ± 0.07 | −86 |
1.00 wt% rGO | 3.30 ± 0.03 | 8 | 48.54 ± 8.34 | −33 | 1.87 ± 0.42 | −76 | 0.54 ± 0.18 | −88 |
1.00 wt% frGO | 3.34 ± 0.07 | 9 | 54.93 ± 1.30 | −24 | 2.18 ± 0.07 | −73 | 0.70 ± 0.04 | −85 |
1.50 wt% rGO | 3.47 ± 0.04 | 14 | 48.14 ± 2.60 | −34 | 1.77 ± 0.18 | −78 | 0.49 ± 0.09 | −89 |
1.50 wt% frGO | 3.43 ± 0.08 | 12 | 50.25 ± 0.60 | −31 | 1.91 ± 0.05 | −76 | 0.56 ± 0.02 | −88 |
Material | Storage Modulus E’g at 40 °C | Loss Factor tan δmax | Glass Transition Temperature Tg Based on tan δpeak | |||
---|---|---|---|---|---|---|
(GPa) | (%) | (-) | (%) | (°C) | (%) | |
Neat polymer | 2.11 ± 0.41 | - | 1.07 ± 0.07 | - | 95 ± 0 | - |
0.25 wt% rGO | 2.65 ± 0.14 | 25 | 1.06 ± 0.01 | −1 | 95 ± 1 | 0 |
0.25 wt% frGO | 2.56 ± 0.21 | 21 | 1.12 ± 0.03 | 5 | 96 ± 1 | 1 |
0.50 wt% rGO | 2.52 ± 0.11 | 19 | 1.07 ± 0.01 | −1 | 95 ± 0 | 0 |
0.50 wt% frGO | 2.53 ± 0.11 | 20 | 1.23 ± 0.08 | 14 | 95 ± 1 | 1 |
0.75 wt% rGO | 2.82 ± 0.09 | 33 | 1.06 ± 0.04 | −1 | 97 ± 2 | 3 |
0.75 wt% frGO | 2.64 ± 0.28 | 25 | 1.04 ± 0.02 | −4 | 95 ± 1 | 0 |
1.00 wt% rGO | 2.86 ± 0.16 | 35 | 1.02 ± 0.04 | −5 | 95 ± 1 | 0 |
1.00 wt% frGO | 2.75 ± 0.30 | 30 | 1.00 ± 0.03 | −7 | 95 ± 0 | 0 |
1.50 wt% rGO | 2.92 ± 0.12 | 38 | 1.10 ± 0.03 | 2 | 99 ± 2 | 5 |
1.50 wt% frGO | 2.85 ± 0.07 | 35 | 0.97 ± 0.00 | −10 | 96 ± 2 | 2 |
Material | Specific Heat Capacity cp | Thermal Diffusivity a | Thermal Conductivity λ | |||
---|---|---|---|---|---|---|
(kJ kg−1 K−1) | (%) | (mm2 s−1) | (%) | (W m−1 K−1) | (%) | |
Neat polymer | 1.099 ± 0.086 | - | 0.126 ± 0.004 | - | 0.161 ± 0.014 | - |
0.25 wt% rGO | 1.135 ± 0.059 | 3 | 0.127 ± 0.004 | 0 | 0.167 ± 0.010 | 3 |
0.25 wt% frGO | 1.141 ± 0.033 | 4 | 0.125 ± 0.002 | −1 | 0.165 ± 0.005 | 2 |
0.50 wt% rGO | 1.130 ± 0.018 | 3 | 0.143 ± 0.004 | 13 | 0.187 ± 0.006 | 16 |
0.50 wt% frGO | 1.161 ± 0.011 | 6 | 0.133 ± 0.004 | 5 | 0.178 ± 0.006 | 11 |
0.75 wt% rGO | 1.150 ± 0.069 | 5 | 0.136 ± 0.005 | 8 | 0.181 ± 0.013 | 12 |
0.75 wt% frGO | 1.141 ± 0.048 | 4 | 0.146 ± 0.005 | 16 | 0.193 ± 0.010 | 20 |
1.00 wt% rGO | 1.160 ± 0.024 | 6 | 0.133 ± 0.004 | 5 | 0.179 ± 0.007 | 11 |
1.00 wt% frGO | 1.132 ± 0.016 | 3 | 0.145 ± 0.002 | 15 | 0.190 ± 0.004 | 18 |
1.50 wt% rGO | 1.137 ± 0.012 | 3 | 0.147 ± 0.003 | 16 | 0.193 ± 0.004 | 20 |
1.50 wt% frGO | 1.127 ± 0.027 | 3 | 0.157 ± 0.002 | 24 | 0.205 ± 0.006 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ackermann, A.C.; Fischer, M.; Wick, A.; Carosella, S.; Fox, B.L.; Middendorf, P. Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment. J. Compos. Sci. 2022, 6, 153. https://doi.org/10.3390/jcs6060153
Ackermann AC, Fischer M, Wick A, Carosella S, Fox BL, Middendorf P. Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment. Journal of Composites Science. 2022; 6(6):153. https://doi.org/10.3390/jcs6060153
Chicago/Turabian StyleAckermann, Annika C., Michael Fischer, Alexander Wick, Stefan Carosella, Bronwyn L. Fox, and Peter Middendorf. 2022. "Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment" Journal of Composites Science 6, no. 6: 153. https://doi.org/10.3390/jcs6060153
APA StyleAckermann, A. C., Fischer, M., Wick, A., Carosella, S., Fox, B. L., & Middendorf, P. (2022). Mechanical, Thermal and Electrical Properties of Epoxy Nanocomposites with Amine-Functionalized Reduced Graphene Oxide via Plasma Treatment. Journal of Composites Science, 6(6), 153. https://doi.org/10.3390/jcs6060153