Load-Bearing Capacities and Pseudo-Ductility of Carbon Fiber-Reinforced New Zealand Pine Timber Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.3. Reinforcement Mechanism Designs
2.4. Sampling and Experiment Setup
3. Results
3.1. Results on Mechanical Performance
3.2. Coefficient of Variation (CV)
3.3. GWP Comparison to Concrete of Similar Dimension
4. Discussion
4.1. Opportunities
4.2. Sample Application on a Slightly Larger Scale
4.3. Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacquier, N. Development and Evaluation of Mechanical Joints for Composite Floor Elements with Cross Laminated Timber. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2015. [Google Scholar]
- Jeska, S.; Pascha, K.S. Emergent Timber Technologies: Materials, Structures, Engineering, Projects; Birkhäuser: Basel, Switzerland, 2014; p. 176. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Speranzini, E. Reinforcement of wood with natural fibers. Compos. Part B Eng. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Knorz, M.; Torno, S.; van de Kuilen, J.W. Bonding quality of industrially produced cross-laminated timber (CLT) as determined in delamination tests. Constr. Build. Mater. 2017, 133, 219–225. [Google Scholar] [CrossRef]
- Okuda, S.; Corpataux, L.; Muthukrishnan, S.; Wei, K.H. Cross-Laminated Timber with Renewable and Fast Growing Tropical Species in South East Asia. In Proceedings of the WCTE 2018—World Conference on Timber Engineering, Seoul, Korea, 20–23 August 2018. [Google Scholar]
- O’Ceallaigh, C.; Sikora, K.; Harte, A.M. The influence of panel lay-up on the characteristic bending and rolling shear strength of CLT. Buildings 2018, 8, 114. [Google Scholar] [CrossRef]
- Globa, A.; Subhani, M.; Moloney, J.; Al-Ameri, R. Carbon fiber and structural timber composites for engineering and construction. J. Archit. Eng. 2018, 24, 04018018. [Google Scholar] [CrossRef]
- Rescalvo, F.J.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. Experimental comparison of different carbon fiber composites in reinforcement layouts for wooden beams of historical buildings. Materials 2017, 10, 1113. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A. Effect of CFRP-Reinforcement variation on the strength parameters of different timber beams. Mater. Today Proc. 2021, 44, 2785–2791. [Google Scholar] [CrossRef]
- Khelifa, M.; Lahouar, M.A.; Celzard, A. Flexural strengthening of finger-jointed Spruce timber beams with CFRP. J. Adhes. Sci. Technol. 2015, 29, 2104–2116. [Google Scholar] [CrossRef]
- Blaß, H.J.; Romani, M. Reinforcement of Glulam Beams with FRP Reinforcement; Karlsruhe Institute of Technology Library: Karlsruhe, Germany, 1998; pp. 1–7. Available online: https://holz.vaka.kit.edu/public/23.pdf (accessed on 21 June 2022).
- Neubauerová, P. Timber beams strengthened by carbon—Fiber reinforced lamellas. Procedia Eng. 2012, 40, 292–297. [Google Scholar] [CrossRef]
- Gómez, E.; González, M.; Hosokawa, K.; Cobo, A. Experimental study of the flexural behavior of timber beams reinforced with different kinds of FRP and metallic fibers. Compos. Struct. 2019, 213, 208–316. [Google Scholar] [CrossRef]
- Gustavsson, L.; Pingoud, K.; Sathre, R. Carbon dioxide balance of wood substitution: Comparing concrete- and wood-framed buildings. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 667–691. [Google Scholar] [CrossRef]
- Sev, A. How can the construction industry contribute to sustainable development? A conceptual framework. Sustain. Dev. 2009, 17, 161–173. [Google Scholar] [CrossRef]
- Meng, F.; Olivetti, E.A.; Zhao, Y.; Chang, J.C.; Pickering, S.J.; McKechnie, J. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options. ACS Sustain. Chem. Eng. 2018, 6, 9854–9865. [Google Scholar] [CrossRef]
- Robertson, A.B.; Lam, F.C.F.; Cole, R.J. A comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: Laminated timber or reinforced concrete. Buildings 2012, 2, 245–270. [Google Scholar] [CrossRef]
- Chand, S. Review carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Harte, A.M.; Dietsch, P. Reinforcement of Timber Structures: A State-of-the-Art Report; Shaker: Düren, Germany, 2015. [Google Scholar]
- García, P.D.; Escamilla, A.C.; García, M.N.G. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Compos. Part B Eng. 2013, 55, 528–536. [Google Scholar] [CrossRef]
- Raftery, G.M.; Harte, A.M. Low-grade glued laminated timber reinforced with FRP plate. Compos. Part B Eng. 2011, 42, 724–735. [Google Scholar] [CrossRef]
- Lindström, H.; Harris, P.; Sorensson, C.; Evans, R. Stiffness and wood variation of 3-year old Pinus radiata clones. Wood Sci. Technol. 2004, 38, 579–597. [Google Scholar] [CrossRef]
- Micelli, F.; Scialpi, V.; la Tegola, A. Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. J. Compos. Constr. 2005, 9, 337–347. [Google Scholar] [CrossRef]
- Corradi, M.; Vemury, C.M.; Edmondson, V.; Poologanathan, K.; Nagaratnam, B. Local FRP reinforcement of existing timber beams. Compos. Struct. 2021, 258, 113363. [Google Scholar] [CrossRef]
- Venkatesan, C.; Velu, R.; Vaheed, N.; Raspall, F.; Tay, T.-E.; Silva, A. Effect of process parameters on polyamide-6 carbon fibre prepreg laminated by IR-assisted automated fibre placement. Int. J. Adv. Manuf. Technol. 2020, 108, 1275–1284. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Chen, S.; Ni, Y. Current overview of carbon fiber: Toward green sustainable raw materials. BioResources 2020, 15, 7234–7259. [Google Scholar] [CrossRef]
Case No. | Total Number of Rounds at the Top * | Total Number of Rounds at the Bottom * | Total Fiber Length Used per 40 × 80 Piece (m) * | Total Fiber Length Used per 40 × 40 Piece (m) * | Carbon Fiber Grams Used per 40 × 80 Piece (g) | Carbon Fiber Grams Used per 40 × 40 Piece (g) |
---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 7 | 6 | 4.87 | 4.71 | 3.70 | 3.58 |
3 | 5 | 4 | 3.47 | 3.31 | 2.64 | 2.52 |
4 | 7 | 7 | 5.22 | 5.06 | 3.97 | 3.85 |
5 | 6 | 6 | 4.52 | 4.36 | 3.44 | 3.31 |
6 | 8 | 8 | 5.92 | 5.76 | 4.50 | 4.38 |
Maximum Load [N] | Flexure Stress at Maximum Load [MPa] | Energy at Maximum Load [J] | Flexure Extension at Maximum Load [mm] | Modulus (E-Modulus) [MPa] | Time at Break [s] | ||
---|---|---|---|---|---|---|---|
40 × 80 Pine samples | Case 1 | 18,948 | 33.31 | 45.70 | 4.16 | 2362 | 52 |
Case 2 | 25,945 | 45.61 | 196.99 | 12.20 | 1998 | 152 | |
Case 3 | 26,295 | 46.22 | 347.67 | 18.34 | 1567 | 229 | |
Case 4 1 | 28,295 | 49.74 | 488.21 | 22.82 | 1199 | 325 | |
Case 5 | 26,706 | 46.94 | 317.39 | 17.03 | 1685 | 234 | |
Case 6 | 26,427 | 46.46 | 410.84 | 21.64 | 1327 | 270 | |
40 × 40 Pine samples | Case 1 | 7020 | 49.36 | 45.36 | 8.89 | 4468 | 113 |
Case 2 | 9407 | 66.15 | 43.92 | 8.14 | 4715 | 101 | |
Case 3 | 9962 | 70.05 | 53.12 | 8.53 | 5900 | 106 | |
Case 4 | 10,743 | 75.54 | 106.38 | 13.76 | 5264 | 172 | |
Case 5 2 | 12,654 | 88.98 | 50.63 | 7.49 | 6213 | 112 | |
Case 6 | 10,449 | 73.47 | 93.41 | 12.74 | 4604 | 159 |
Case #4 | Cross Section | Volume (m3) | GWP (kg CO2 -e) | Flexural Strength (MPa) |
---|---|---|---|---|
Timber | 40 × 80 | 0.00056 | 0.1191 (−80%) | 49.74 (+24%) |
Concrete | 40 × 80 | 0.00112 | 0.55664 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlote, D.S.; Budig, M. Load-Bearing Capacities and Pseudo-Ductility of Carbon Fiber-Reinforced New Zealand Pine Timber Beams. J. Compos. Sci. 2022, 6, 239. https://doi.org/10.3390/jcs6080239
Mlote DS, Budig M. Load-Bearing Capacities and Pseudo-Ductility of Carbon Fiber-Reinforced New Zealand Pine Timber Beams. Journal of Composites Science. 2022; 6(8):239. https://doi.org/10.3390/jcs6080239
Chicago/Turabian StyleMlote, Doreen Steven, and Michael Budig. 2022. "Load-Bearing Capacities and Pseudo-Ductility of Carbon Fiber-Reinforced New Zealand Pine Timber Beams" Journal of Composites Science 6, no. 8: 239. https://doi.org/10.3390/jcs6080239
APA StyleMlote, D. S., & Budig, M. (2022). Load-Bearing Capacities and Pseudo-Ductility of Carbon Fiber-Reinforced New Zealand Pine Timber Beams. Journal of Composites Science, 6(8), 239. https://doi.org/10.3390/jcs6080239