Thermal Transformation of Secondary Resources of Carbon-Rich Wastes into Valuable Industrial Applications
Abstract
:1. Introduction
2. Waste Products: Secondary Resources of Carbon
2.1. Textile Waste—Source of Activated Carbon
2.2. Reductants in Metallurgical Processes
3. Thermal Transformation of Different Wastes into Valuable Products
3.1. Textile Wastes
3.1.1. Production of Carbon and Activated Carbon Fibres
3.1.2. Carbon and Activated Carbon Fibres from Waste Cotton Textiles
3.2. Automotive Shredder Residues (ASR) and Glass Wastes
3.2.1. Thermal Transformation of ASR and Waste Glass
3.2.2. Production of SiC
3.2.3. Mechanism of SiC Nanospheres Formation
3.3. Leather Wastes
3.3.1. Production of Char from Used Leather
3.3.2. Char-Based Reduction of Iron Oxide (Fe2O3)
3.4. Spent Coffee Grounds (SCGs)
3.4.1. Formation of T-SCGs
3.4.2. Pellet Preparation
3.4.3. Heat Treatment of Pellets
3.4.4. Transformed-Spent Coffee Grounds (T-SCGs)-Based Hematite Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiksel, J.; Lal, R. Transforming waste into resources for the Indian economy. Environ. Dev. 2018, 26, 123–128. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E. Plastic recycling. In Handbook of Recycling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 179–190. [Google Scholar]
- Cossu, R.; Lai, T. Automotive shredder residue (ASR) management: An overview. Waste Manag. 2015, 45, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hemati, S.; Hossain, R.; Sahajwalla, V. Selective thermal transformation of automotive shredder residues into high-value nano silicon carbide. Nanomaterials 2021, 11, 2781. [Google Scholar] [CrossRef] [PubMed]
- Juanga-Labayen, J.P.; Labayen, I.V.; Yuan, Q. A review on textile recycling practices and challenges. J. Text. 2022, 2, 174–188. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek-Krowiak, A.; Izydorczyk, G.; Kuligowski, K.; Bandrów, P.; Kułażyński, M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021, 313, 127902. [Google Scholar] [CrossRef]
- Nur-A-Tomal, M.S.; Biswal, S.; Pahlevani, F.; Sahajwalla, V. Recycling tannery solid wastes as an alternative carbon resource for ironmaking. J. Mater. Cycles Waste Manag. 2022, 24, 2030–2040. [Google Scholar] [CrossRef]
- McNutt, J. Spent coffee grounds: A review on current utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Biswal, S.; Pahlevani, F.; Sahajwalla, V. Synthesis of Value-Added Ferrous Material from Electric Arc Furnace (EAF) Slag and Spent Coffee Grounds. JOM 2021, 73, 1878–1888. [Google Scholar] [CrossRef]
- Gordon, S.; Hsieh, Y.-l. Cotton: Science and Technology; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Macmillan, C.; Birke, H.; Bedon, F.; Pettolino, F. Lignin deposition in cotton cells—Where is the lignin. J. Plant Biochem. Physiol. 2013, 1, e106. [Google Scholar] [CrossRef]
- Jody, B.; Daniels, E.; Duranceau, C.; Pomykala, J.; Spangenberger, J. End-of-Life Vehicle Recycling: State of the Art of Resource Recovery from Shredder Residue. 2010. Available online: https://publications.anl.gov/anlpubs/2011/02/69114.pdf (accessed on 27 November 2022).
- GHK. A Study to Examine the Benefits of the End of Life Vehicles Directive and the Costs and Benefits of a Revision of the 2015 Targets for Recycling, Re-Use and Recovery under the ELV Directive. Final Report to DG Environment, Birmingham, USA. 2006, pp. 3–4. Available online: https://ec.europa.eu/environment/pdf/waste/study/final_report.pdf (accessed on 27 November 2022).
- Masilamani, D.; Srinivasan, V.; Ramachandran, R.K.; Gopinath, A.; Madhan, B.; Saravanan, P. Sustainable packaging materials from tannery trimming solid waste: A new paradigm in wealth from waste approaches. J. Clean. Prod. 2017, 164, 885–891. [Google Scholar] [CrossRef]
- Famielec, S. Chromium concentrate recovery from solid tannery waste in a thermal process. Materials 2020, 13, 1533. [Google Scholar] [CrossRef]
- Ridder, M. Coffee Market Worldwide 2022: Report; Statista Inc.: Hamburg, Germany, 2022; p. 36. [Google Scholar]
- Cameron, A.O.M. Sean Coffee 4 Planet Ark: Final Report for the City of Sydney; 2015/199344; The Council of the City of Sydney: Sydney, Australia, 2016; p. 21. [Google Scholar]
- Campos-Vega, R.; Loarca-Pina, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Shukla, A.; Sharma, V.; Basak, S.; Ali, S.W. Sodium lignin sulfonate: A bio-macromolecule for making fire retardant cotton fabric. Cellulose 2019, 26, 8191–8208. [Google Scholar] [CrossRef]
- Kundu, C.K.; Li, Z.; Song, L.; Hu, Y. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. Eur. Polym. J. 2020, 137, 109911. [Google Scholar] [CrossRef]
- Nilsson, D.; Holmstedt, G. Kompendium i Aktiva System-Detektion; LUTVDG/TVBB–7030–SE; Lund University: Lund, Sweden, 2008; Volume 7030, p. 81. [Google Scholar]
- Li, P.; Wang, B.; Xu, Y.-J.; Jiang, Z.; Dong, C.; Liu, Y.; Zhu, P. Ecofriendly flame-retardant cotton fabrics: Preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustain. Chem. 2019, 7, 19246–19256. [Google Scholar] [CrossRef]
- Hsieh, Y.-L. Chemical Structure and Properties of Cotton. In Cotton: Science and Technology; Gordon, S., Hsieh, Y.L., Eds.; Woodhead Publishing Limited: Sawston, UK; CRC Press: Boca Raton, FL, USA, 2007; pp. 3–34. [Google Scholar]
- Williams, P.T.; Reed, A.R. High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. J. Anal. Appl. Pyrolysis 2004, 71, 971–986. [Google Scholar] [CrossRef]
- Wesley, C.; Pahlevani, F.; Nur-A-Tomal, S.; Biswal, S.; Sahajwalla, V. An investigation into the minimum energy requirements for transforming end-of-life cotton textiles into carbon fibre in an Australian context. Resour. Conserv. Recycl. Adv. 2023, 17, 200123. [Google Scholar] [CrossRef]
- Jagdale, P.; Nair, J.R.; Khan, A.; Armandi, M.; Meligrana, G.; Hernandez, F.R.; Rusakova, I.; Piatti, E.; Rovere, M.; Tagliaferro, A. Waste to life: Low-cost, self-standing, 2D carbon fiber green Li-ion battery anode made from end-of-life cotton textile. Electrochim. Acta 2021, 368, 137644. [Google Scholar] [CrossRef]
- DeSilva, F.J. Activated Carbon Filtration. Water Quality Products Magazine. 2000. Available online: https://h2oblogged.files.wordpress.com/2010/05/activated20carbon20filtration.pdf (accessed on 27 November 2022).
- Khayyam Nekouei, R.; Mofarah, S.S.; Maroufi, S.; Wang, W.; Mansuri, I.; Sahajwalla, V. Unraveling the Role of Oxides in Electrochemical Performance of Activated Carbons for High Voltage Symmetric Electric Double-Layer Capacitors. Adv. Energy Sustain. Res. 2022, 3, 2100130. [Google Scholar] [CrossRef]
- Ahammad, A.S.; Pal, P.R.; Shah, S.S.; Islam, T.; Hasan, M.M.; Qasem, M.A.A.; Odhikari, N.; Sarker, S.; Kim, D.M.; Aziz, M.A. Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. J. Electroanal. Chem. 2019, 832, 368–379. [Google Scholar] [CrossRef]
- Buekens, A.; Zhou, X. Recycling plastics from automotive shredder residues: A review. J. Mater. Cycles Waste Manag. 2014, 16, 398–414. [Google Scholar] [CrossRef]
- Joung, H.-T.; Cho, S.-J.; Seo, Y.-C.; Kim, W.-H. Status of recycling end-of-life vehicles and efforts to reduce automobile shredder residues in Korea. J. Mater. Cycles Waste Manag. 2007, 9, 159–166. [Google Scholar] [CrossRef]
- Kim, K.-H.; Joung, H.-T.; Nam, H.; Seo, Y.-C.; Hong, J.H.; Yoo, T.-W.; Lim, B.-S.; Park, J.-H. Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Manag. 2004, 24, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Mark, F.E. Del Reciclado a la Energía. In Proceedings of the Conferencia Internacional Sobre Innovación em la Valorización de los Residuos Plásticos, Madrid, Spain; 2000. [Google Scholar]
- Mayyas, M.; Pahlevani, F.; Handoko, W.; Sahajwalla, V. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics. Waste Manag. 2016, 50, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Gotsis, A.; Zeevenhoven, B.; Hogt, A. The effect of long chain branching on the processability of polypropylene in thermoforming. J. Polym. Eng. Sci. 2004, 44, 973–982. [Google Scholar] [CrossRef]
- Cabrera, N.; Alcock, B.; Loos, J.; Peijs, T. Processing of all-polypropylene composites for ultimate recyclability. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2004, 218, 145–155. [Google Scholar] [CrossRef]
- Vermeulen, I.; Van Caneghem, J.; Block, C.; Baeyens, J.; Vandecasteele, C. Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J. Hazard. Mater. 2011, 190, 8–27. [Google Scholar] [CrossRef]
- Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Al-Salem, S.; Lettieri, P.; Baeyens, J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog. Energy Combust. Sci. 2010, 36, 103–129. [Google Scholar] [CrossRef]
- Brems, A.; Baeyens, J.; Vandecasteele, C.; Dewil, R. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. J. Air Waste Manag. Assoc. 2011, 61, 721–731. [Google Scholar] [CrossRef]
- De Marco, I.; Caballero, B.; Chomón, M.; Laresgoiti, M.; Torres, A.; Fernández, G.; Arnaiz, S. Pyrolysis of electrical and electronic wastes. J. Anal. Appl. Pyrolysis 2008, 82, 179–183. [Google Scholar] [CrossRef]
- Maroufi, S.; Mayyas, M.; Sahajwalla, V. Novel synthesis of silicon carbide nanowires from e-waste. ACS Sustain. Chem. Eng. 2017, 5, 4171–4178. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Q.; Qin, H.; Li, Z.; Lou, Z.; Lu, J.; Zhang, J.; Zhou, Q. Synthesis of silicon carbide nanocrystals from waste polytetrafluoroethylene. Dalton Trans. 2017, 46, 2756–2759. [Google Scholar] [CrossRef] [PubMed]
- Farzana, R.; Rajarao, R.; Sahajwalla, V. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis. Waste Manag. Res. 2016, 34, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Maroufi, S.; Mayyas, M.; Sahajwalla, V. Waste materials conversion into mesoporous silicon carbide nanocermics: Nanofibre/particle mixture. J. Clean. Prod. 2017, 157, 213–221. [Google Scholar] [CrossRef]
- An, Z.; Wang, H.; Zhu, C.; Cao, H.; Xue, J. Synthesis and formation mechanism of porous silicon carbide stacked by nanoparticles from precipitated silica/glucose composites. J. Mater. Sci. 2019, 54, 2787–2795. [Google Scholar] [CrossRef]
- Ahmed, S.; Fatema-Tuj-Zohra; Khan, M.S.H.; Hashem, M.A. Chromium from tannery waste in poultry feed: A potential cradle to transport human food chain. Cogent Environ. Sci. 2017, 3, 1312767. [Google Scholar] [CrossRef]
- Ravindranath, E.; Chitra, K.; Porselvam, S.; Srinivasan, S.; Suthanthararajan, R. Green energy from the combined treatment of liquid and solid waste from the tanning industry using an upflow anaerobic sludge blanket reactor. J. Energy Fuels 2015, 29, 1892–1898. [Google Scholar] [CrossRef]
- Covington, A.D.; Wise, W.R. Tanning Chemistry: The Science of Leather, 2nd ed.; Royal Society of Chemistry: London, UK, 2020. [Google Scholar]
- Vyskočilová, G.; Ebersbach, M.; Kopecká, R.; Prokeš, L.; Příhoda, J. Model study of the leather degradation by oxidation and hydrolysis. Herit. Sci. 2019, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, O.A.; El Sayed, N.H.; Abdelhakim, A.A. Preparation and characterization of polyamide-leather wastes polymer composites. J. Appl. Polym. Sci. 2010, 118, 446–451. [Google Scholar] [CrossRef]
- Liu, J.; Luo, L.; Zhang, Z.; Hu, Y.; Wang, F.; Li, X.; Tang, K. A combined kinetic study on the pyrolysis of chrome shavings by thermogravimetry. Carbon Resour. Convers. 2020, 3, 156–163. [Google Scholar] [CrossRef]
- Cardona, N.; Velásquez, S.; Giraldo, D. Characterization of Leather Wastes from Chrome Tanning and its Effect as Filler on the Rheometric Properties of Natural Rubber Compounds. J. Polym. Environ. 2017, 25, 1190–1197. [Google Scholar] [CrossRef]
- Liu, J.; Luo, L.; Hu, Y.; Wang, F.; Zheng, X.; Tang, K. Kinetics and mechanism of thermal degradation of vegetable-tanned leather fiber. J. Leather Sci. Eng. 2019, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, H.; Chen, C.; Li, X.; Deng, Q.; Gong, M.; Li, D. Size effect of charcoal particles on the properties of bamboo charcoal/ultra-high molecular weight polyethylene composites. J. Appl. Polym. Sci. 2017, 134, 45530. [Google Scholar] [CrossRef]
- Van Rensburg, M.L.; Nkomo, S.p.L.; Mkhize, N.M. Characterization and pyrolysis of post-consumer leather shoe waste for the recovery of valuable chemicals. Multidiscip. J. Waste Resour. Residues 2021, 92. [Google Scholar] [CrossRef]
- Yılmaz, O.; Cem Kantarli, I.; Yuksel, M.; Saglam, M.; Yanik, J. Conversion of leather wastes to useful products. Resour. Conserv. Recycl. 2007, 49, 436–448. [Google Scholar] [CrossRef]
- Biswal, S.; Pahlevani, F.; Bhattacharyya, S.K.; Sahajwalla, V. A novel reforming approach of utilizing spent coffee grounds to produce iron. Resour. Conserv. Recycl. 2020, 163, 105067. [Google Scholar] [CrossRef]
- Colantoni, A.; Paris, E.; Bianchini, L.; Ferri, S.; Marcantonio, V.; Carnevale, M.; Palma, A.; Civitarese, V.; Gallucci, F. Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The chemical composition of exhausted coffee waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Bonalde, A.; Henriquez, A.; Manrique, M. Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent. ISIJ Int. 2005, 45, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Hu, M.; Pu, C.; Xiao, B.; Hu, Z.; Liu, S.; Wang, X.; Zhu, X. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas. Int. J. Hydrogen Energy 2015, 40, 4733–4740. [Google Scholar] [CrossRef]
- Luo, S.; Yi, C.; Zhou, Y. Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas. Renew. Energy 2011, 36, 3332–3336. [Google Scholar] [CrossRef]
Element | O | C | H | S | Ca | N | Others |
---|---|---|---|---|---|---|---|
Mass% | 51.11 | 42.01 | 6.14 | 0.21 | 0.21 | 0.15 | 0.17 |
Element | MDL | Shavings | Buffing Dust | Leather Cuttings |
---|---|---|---|---|
Cr | 5.00 | 18,114 | 25,213 | 8272 |
Na | 50.00 | 14,194 | 4549 | 4625 |
S | 50.00 | 10,879 | 17,077 | 10,801 |
Mg | 5.00 | 958 | 809 | 204 |
Si ** | 0.50 | 49 | 1983 | 750 |
Al | 5.00 | 14.80 | 3079 | 39.8 |
Ca | 5.00 | 686 | 1252 | 3766 |
Fe | 5.00 | 428 | 530 | 112 |
B | 0.50 | 258.0 | 13.6 | 3.9 |
K | 5.00 | 137 | 228 | 481 |
P | 5.00 | 116 | 619 | 211 |
Cu | 0.50 | 0.64 | 65.6 | 5.9 |
Ti | 0.50 | 0.51 | 56.38 | 3.65 |
Ba | 0.50 | 0.43 | 9.22 | 27.67 |
Sr | 0.50 | 5.08 | 9.25 | 11.2 |
Ga | 0.50 | 0.96 | 2.48 | 1.81 |
Ni | 0.50 | 0.97 | 1.78 | 1.04 |
Pb | 0.50 | 0.18 | 3.45 | 1.62 |
Co | 0.50 | 0.19 | 0.95 | 0.73 |
Element | Shavings Char | Buffing Dust Char | Leather Cuttings Char |
---|---|---|---|
Carbon (%) | 50.0 | 39.0 | 68.9 |
Nitrogen (%) | 11.4 | 7.1 | 7.5 |
Hydrogen (%) | 2.5 | 1.1 | 2.4 |
Sulphur (%) | 1.9 | 2.7 | 1.2 |
Element | Concentration of Metals Produced Using | ||
---|---|---|---|
Shavings Char (%) | Buffing Dust Char (%) | Leather Cuttings Char (%) | |
Fe | 99.70 ± 0.06 | 99.70 ± 0.05 | 99.7 ± 0.04 |
C | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.025 ± 0.01 |
Cr | 0.12 ± 0.01 | 0.12 ± 0.12 | 0.024 ± 0.003 |
Mn | 0.11 ± 0.02 | 0.10 ± 0.01 | 0.122 ± 0.01 |
Oxides | SiO2 | Al2O3 | Fe2O3 | Mn3O4 | MgO | CaO | Na2O | K2O | P2O5 | SO3 |
---|---|---|---|---|---|---|---|---|---|---|
SCGs (weight %) | 0.70 | 0.31 | 0.31 | 0.28 | 18.30 | 11.95 | 3.56 | 29.35 | 17.23 | 5.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemati, S.; Udayakumar, S.; Wesley, C.; Biswal, S.; Nur-A-Tomal, M.S.; Sarmadi, N.; Pahlevani, F.; Sahajwalla, V. Thermal Transformation of Secondary Resources of Carbon-Rich Wastes into Valuable Industrial Applications. J. Compos. Sci. 2023, 7, 8. https://doi.org/10.3390/jcs7010008
Hemati S, Udayakumar S, Wesley C, Biswal S, Nur-A-Tomal MS, Sarmadi N, Pahlevani F, Sahajwalla V. Thermal Transformation of Secondary Resources of Carbon-Rich Wastes into Valuable Industrial Applications. Journal of Composites Science. 2023; 7(1):8. https://doi.org/10.3390/jcs7010008
Chicago/Turabian StyleHemati, Sepideh, Sanjith Udayakumar, Charlotte Wesley, Smitirupa Biswal, Md. Shahruk Nur-A-Tomal, Negin Sarmadi, Farshid Pahlevani, and Veena Sahajwalla. 2023. "Thermal Transformation of Secondary Resources of Carbon-Rich Wastes into Valuable Industrial Applications" Journal of Composites Science 7, no. 1: 8. https://doi.org/10.3390/jcs7010008
APA StyleHemati, S., Udayakumar, S., Wesley, C., Biswal, S., Nur-A-Tomal, M. S., Sarmadi, N., Pahlevani, F., & Sahajwalla, V. (2023). Thermal Transformation of Secondary Resources of Carbon-Rich Wastes into Valuable Industrial Applications. Journal of Composites Science, 7(1), 8. https://doi.org/10.3390/jcs7010008