Biomass Derived High Porous Carbon via CO2 Activation for Supercapacitor Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Chemical Activation
2.2.2. Physical Activation
2.3. Electrode Fabrication and Electrochemical Measurements
2.4. Characterization of Obtained Samples
3. Results and Discussion
3.1. Morphology and Textural Properties
3.2. Chemical Characterization
3.3. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Ge, L.; Zuo, M.; Mai, L.; Chen, S.; Li, X.; Li, Q.; Wang, Y.; Xu, C. Study on the Mechanical Strength and Iodine Adsorption Behavior of Coal-Based Activated Carbon Based on Orthogonal Experiments. Energy 2023, 282, 128450. [Google Scholar] [CrossRef]
- Jacobs, J.H.; Chou, N.; Lesage, K.L.; Xiao, Y.; Hill, J.M.; Marriott, R.A. Investigating Activated Carbons for SO2 Adsorption in Wet Flue Gas. Fuel 2023, 353, 129239. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, Y.-M.; Roh, K.C. Enhancing Gravimetric and Volumetric Capacitance in Supercapacitors with Nanostructured Partially Graphitic Activated Carbon. Electrochem. Commun. 2023, 154, 107560. [Google Scholar] [CrossRef]
- Erdogan, F.O.; Celik, C.; Turkmen, A.C.; Sadak, A.E.; Cücü, E. Hydrogen Storage Behavior of Zeolite/Graphene, Zeolite/Multiwalled Carbon Nanotube and Zeolite/Green Plum Stones-Based Activated Carbon Composites. J. Energy Storage 2023, 72, 108471. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Bakbolat, B.; Baimenov, A.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. Sci. Total Environ 2023, 885, 163914. [Google Scholar] [CrossRef] [PubMed]
- Ilyin, Y.V.; Kudaibergenov, K.K.; Sharipkhanov, S.D.; Mansurov, Z.A.; Zhaulybayev, A.A.; Atamanov, M.K. Surface Modifications of CuO Doped Carbonaceous Nanosorbents and Their CO2 Sorption Properties. Eurasian Chem.-Technol. J. 2023, 25, 33–38. [Google Scholar] [CrossRef]
- Atamanov, M.K.; Amrousse, R.; Hori, K.; Kolesnikov, B.Y.; Mansurov, Z.A. Influence of Activated Carbon on the Thermal Decomposition of Hydroxylammonium Nitrate. Combust. Explos. Shock Waves 2018, 54, 316–324. [Google Scholar] [CrossRef]
- Hermawan, A.; Destyorini, F.; Hardiansyah, A.; Alviani, V.N.; Mayangsari, W.; Wibisono; Septiani, N.L.W.; Yudianti, R.; Yuliarto, B. High Energy Density Asymmetric Supercapacitors Enabled by La-Induced Defective MnO2 and Biomass-Derived Activated Carbon. Mater. Lett. 2023, 351, 135031. [Google Scholar] [CrossRef]
- Cui, X.; Jiang, Y.; He, Z.; Liu, Z.; Yang, X.; Wan, J.; Liu, Y.; Ma, F. Preparation of Tank-like Resin-Derived Porous Carbon Sphere for Supercapacitor: The Influence of KOH Activator and Activation Temperature on Structure and Performance. Diam. Relat. Mater. 2023, 136, 110054. [Google Scholar] [CrossRef]
- Bkangmo Kontchouo, F.M.; Jiang, Y.; Liang, J.; Fan, M.; Shao, Y.; Zhang, L.; Zhang, S.; Hu, X. Activation of Biomass (Cola Nut Shell) with KOH and K2C2O4: The Distinct Influence on Evolution of Volatiles and Pore Structures of Activated Carbon. J. Energy Inst. 2023, 109, 101288. [Google Scholar] [CrossRef]
- Alharbi, H.A.; Hameed, B.H.; Alotaibi, K.D.; Al-Oud, S.S.; Al-Modaihsh, A.S. Recent Methods in the Production of Activated Carbon from Date Palm Residues for the Adsorption of Textile Dyes: A Review. Front. Environ. Sci. 2022, 10, 996953. [Google Scholar] [CrossRef]
- Zhang, X.; Ge, Y.; Zhu, G.; Tang, J.; Xing, X.; Li, N. Effect of Acid and Hydrothermal Treatments on the Multilayer Adsorption of Cr(VI) and Dyes on Biomass-Derived Nano/Mesoporous Carbon. JMR 2019, 34, 3020–3029. [Google Scholar] [CrossRef]
- Quan, G.; Wang, H.; Zhu, F.; Yan, J. Porous Biomass Carbon Coated with SiO2 as High Performance Electrodes for Capacitive Deionization. Bio. Resources 2018, 13, 437–449. [Google Scholar] [CrossRef]
- Goel, C.; Mohan, S.; Dinesha, P. CO2 Capture by Adsorption on Biomass-Derived Activated Char: A Review. Sci. Total Environ. 2021, 798, 149296. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gutiérrez, J.; Canevesi, R.L.S.; Emo, M.; Izquierdo, M.T.; Celzard, A.; Fierro, V. CO2 Outperforms KOH as an Activator for High-Rate Supercapacitors in Aqueous Electrolyte. Renew. Sust. Energ. Rev. 2022, 167, 112716. [Google Scholar] [CrossRef]
- Soares Rodrigues, C.I.; Jackson, J.J.; Montross, M.D. A Molar Basis Comparison of Calcium Hydroxide, Sodium Hydroxide, and Potassium Hydroxide on the Pretreatment of Switchgrass and Miscanthus under High Solids Conditions. Ind. Crops Prod. 2016, 92, 165–173. [Google Scholar] [CrossRef]
- Guo, F.; Peng, K.; Liang, S.; Jia, X.; Jiang, X.; Qian, L. Evaluation of the Catalytic Performance of Different Activated Biochar Catalysts for Removal of Tar from Biomass Pyrolysis. Fuel 2019, 258, 116204. [Google Scholar] [CrossRef]
- Qiu, W.; Dou, K.; Zhou, Y.; Huang, H.; Chen, Y.; Lu, H. Hierarchical Pore Structure of Activated Carbon Fabricated by CO2/Microwave for Volatile Organic Compounds Adsorption. Chin. J. Chem. Eng. 2018, 26, 81–88. [Google Scholar] [CrossRef]
- Okayama, R.; Amano, Y.; Machida, M. Effect of Nitrogen Species on an Activated Carbon Surface on the Adsorption of Cu(II) Ions from Aqueous Solution. Carbon 2010, 10, 3000. [Google Scholar] [CrossRef]
- Guo, S.; Peng, J.; Li, W.; Yang, K.; Zhang, L.; Zhang, S.; Xia, H. Effects of CO2 Activation on Porous Structures of Coconut Shell-Based Activated Carbons. Appl. Surf. Sci. 2009, 255, 8443–8449. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B.; Cruz Junior, O.F.; Sreńscek-Nazzal, J. Design of Highly Microporous Activated Carbons Based on Walnut Shell Biomass for H2 and CO2 Storage. Carbon 2023, 201, 633–647. [Google Scholar] [CrossRef]
- Yang, X.; Xie, D.; Wang, W.; Li, S.; Tang, Z.; Dai, S. An Activated Carbon from Walnut Shell for Dynamic Capture of High Concentration Gaseous Iodine. J. Chem. Eng. 2023, 454, 140365. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Wu, D.; Bai, X.; Lin, Y.; Wu, T.; Zhang, C.; Chen, D.; Li, H. Improving the Supercapacitor Performance of Activated Carbon Materials Derived from Pretreated Rice Husk. J. Energy Storage 2021, 44, 103432. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Xie, D.H.; Cui, P.; Chen, X.Y. Conversion of a zinc salicylate complex into porous carbons through a template carbonization process as a superior electrode material for supercapacitors. RSC Adv. 2014, 4, 6664–6671. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Memon, N.K.; Tse, S.D.; Al-Sharab, J.F.; Yamaguchi, H.; Goncalves, A.-M.B.; Kear, B.H.; Jaluria, Y.; Andrei, E.Y.; Chhowalla, M. Flame Synthesis of Graphene Films in Open Environments. Carbon 2011, 49, 5064–5070. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, Z.; Liu, Z.; Xie, Y.; Zhang, J.; Hu, T. Preparation of Carbon-Encapsulated Iron Carbide Nanoparticles by an Explosion Method. Carbon 2003, 41, 317–321. [Google Scholar] [CrossRef]
- de Oliveira Pereira, L.; Marques Sales, I.; Pereira Zampiere, L.; Silveira Vieira, S.; do Rosário Guimarães, I.; Magalhães, F. Preparation of Magnetic Photocatalysts from TiO2, Activated Carbon and Iron Nitrate for Environmental Remediation. J. Photochem. Photobiol. A Chem. 2019, 382, 111907. [Google Scholar] [CrossRef]
- Pandey, A.P.; Shaz, M.A.; Sekkar, V.; Tiwari, R.S. Synergistic Effect of CNT Bridge Formation and Spillover Mechanism on Enhanced Hydrogen Storage by Iron Doped Carbon Aerogel. Int. J. Hydrogen Energy 2023, 48, 21395–21403. [Google Scholar] [CrossRef]
- Ketov, A.; Rudakova, L.; Vaisman, I.; Ketov, I.; Haritonovs, V.; Sahmenko, G. Recycling of Rice Husks Ash for the Preparation of Resistant, Lightweight and Environment-Friendly Fired Bricks. Constr. Build. Mater. 2021, 302, 124385. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Askaruly, K.; Korobeinyk, A.V.; Azat, S.; Yeleuov, M.; Taurbekov, A.; Toshtay, K.; Tauanov, Z.; Su, X. The Electrochemical Behavior of Silica and Activated Carbon Materials Derived from the Rice Husk Waste for Li-Ion Cells. Diam. Relat. Mater. 2023, 133, 109759. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Erdocia, X.; Charrier-El Bouhtoury, F.; Prado, R.; Labidi, J. Multistage Treatment of Almonds Waste Biomass: Characterization and Assessment of the Potential Applications of Raw Material and Products. Waste Manag. Res. 2018, 80, 40–50. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Amarowicz, R. Walnut (Juglans regia L.) Shell Pyroligneous Acid: Chemical Constituents and Functional Applications. RSC Adv. 2018, 8, 22376–22391. [Google Scholar] [CrossRef] [PubMed]
- Albatrni, H.; Qiblawey, H.; Al-Marri, M.J. Walnut Shell Based Adsorbents: A Review Study on Preparation, Mechanism, and Application. JWPE 2022, 45, 102527. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 0378–7753. [Google Scholar] [CrossRef]
- Prikhodko, N.; Yeleuov, M.; Abdisattar, A.; Askaruly, K.; Taurbekov, A.; Tolynbekov, A.; Rakhymzhan, N.; Daulbayev, C. Enhancing supercapacitor performance through graphene flame synthesis on nickel current collectors and active carbon material from plant biomass. J. Energy Storage 2023, 73, 108853. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taurbekov, A.; Abdisattar, A.; Atamanov, M.; Yeleuov, M.; Daulbayev, C.; Askaruly, K.; Kaidar, B.; Mansurov, Z.; Castro-Gutierrez, J.; Celzard, A.; et al. Biomass Derived High Porous Carbon via CO2 Activation for Supercapacitor Electrodes. J. Compos. Sci. 2023, 7, 444. https://doi.org/10.3390/jcs7100444
Taurbekov A, Abdisattar A, Atamanov M, Yeleuov M, Daulbayev C, Askaruly K, Kaidar B, Mansurov Z, Castro-Gutierrez J, Celzard A, et al. Biomass Derived High Porous Carbon via CO2 Activation for Supercapacitor Electrodes. Journal of Composites Science. 2023; 7(10):444. https://doi.org/10.3390/jcs7100444
Chicago/Turabian StyleTaurbekov, Azamat, Alisher Abdisattar, Meiram Atamanov, Mukhtar Yeleuov, Chingis Daulbayev, Kydyr Askaruly, Bayan Kaidar, Zulkhair Mansurov, Jimena Castro-Gutierrez, Alain Celzard, and et al. 2023. "Biomass Derived High Porous Carbon via CO2 Activation for Supercapacitor Electrodes" Journal of Composites Science 7, no. 10: 444. https://doi.org/10.3390/jcs7100444