Zinc Oxide Non-Eugenol Cement versus Resinous Cement on Single Implant Restoration: A Split-Mouth Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Procedure
2.3. Prosthetic Procedures
2.4. Descriptive Statistics
3. Results
4. Discussion
- although pathologies caused by excess cement are low, resinous cements should be avoided due to the free monomers present in them, which are toxic for the soft tissues;
- the use of eugenol-free oxide cement made it possible to find no residues in the soft tissues but only in adhesion to the implant and prosthetic components;
- the provisional zinc oxide cements, also eugenol-free, easily recognizable in intraoral radiography, are easily removed, and allow for easier removal of prosthetic restorations, unlike definitive cements;
- and the different grades of retentive forces provided by these cements do not seem to have a clinical effect on the decementation of the restorations.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaar, M.S.; Att, W.; Strub, J.R. Prosthetic outcome of cement-retained implant-supported fixed dental restorations: A systematic review. J. Oral Rehabil. 2011, 38, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Mühlemann, S.; Zwahlen, M.; Hämmerle, C.H.F.; Schneider, D. Cemented and screw-retained implant reconstructions: A systematic review of the survival and complication rates. Clin. Oral Implant. Res. 2012, 23, 163–201. [Google Scholar] [CrossRef] [PubMed]
- Tinedo-López, P.L.; Malpartida-Carrillo, V.; Ortiz-Culca, F.; Guerrero, M.E.; Amaya-Pajares, S.P.; Özcan, M. Vertical Marginal Discrepancy of Retrievable Cement/Screw-retained Design and Cement-retained Implant-supported Single Metal Copings. J. Contemp. Dent. Pract. 2020, 1, 829–834. [Google Scholar]
- Reda, R.; Zanza, A.; Cicconetti, A.; Bhandi, S.; Guarnieri, R.; Testarelli, L.; Di Nardo, D. A Systematic Review of Cementation Techniques to Minimize Cement Excess in Cement-Retained Implant Restorations. Methods Protoc. 2022, 5, 9. [Google Scholar] [CrossRef]
- Scarano, A.; Inchingolo, F.; Scogna, S.; Leo, L.; Greco Lucchina, A.; Mavriqi, L. Peri-implant disease caused by residual cement around implant-supported restorations: A clinical report. J. Biol. Regul. Homeost Agents 2021, 35, 211–216. [Google Scholar]
- Lemos, C.A.; de Souza Batista, V.E.; Almeida, D.A.; Santiago Júnior, J.F.; Verri, F.R.; Pellizzer, E.P. Evaluation of cement-retained versus screw-retained implant-supported restorations for marginal bone loss: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 115, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Hamed, M.T.; Abdullah Mously, H.; Khalid Alamoudi, S.; Hossam Hashem, A.B.; Hussein Naguib, G. A Systematic Review of Screw versus Cement-Retained Fixed Implant Supported Reconstructions. Clin. Cosmet. Investig. Dent. 2020, 12, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Periodontol. 2018, 89, S267–S290. [Google Scholar] [CrossRef]
- Guarnieri, R.; Miccoli, G.; Reda, R.; Mazzoni, A.; Di Nardo, D.; Testarelli, L. Laser microgrooved vs. machined healing abutment dis-connection/reconnection: A comparative clinical, radiographical and biochemical study with split-mouth design. Int. J. Implant Dent. 2021, 17, 7–19. [Google Scholar]
- Guarnieri, R.; Reda, R.; Di Nardo, D.; Miccoli, G.; Zanza, A.; Testarelli, L. Clinical, radiographic, and biochemical evaluation of two-piece versus one-piece single implants with a laser-microgrooved collar surface after 5 years of functional loading. Clin. Implant Dent. Relat. Res. 2022, 24, 676–682. [Google Scholar] [CrossRef]
- Romanos, G.E.; Delgado-Ruiz, R.; Sculean, A. Concepts for prevention of complications in implant therapy. Periodontology 2019, 81, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, R.; Miccoli, G.; Reda, R.; Mazzoni, A.; Di Nardo, D.; Testarelli, L. Sulcus fluid volume, IL-6, and Il-1b concentrations in periodontal and peri-implant tissues comparing machined and laser-microtextured collar/abutment surfaces during 12 weeks of healing: A split-mouth RCT. Clin. Oral Implants Res. 2022, 33, 94–104. [Google Scholar] [CrossRef]
- Guarnieri, R.; Zanza, A.; D’Angelo, M.; Di Nardo, D.; Del Giudice, A.; Mazzoni, A.; Reda, R.; Testarelli, L. Correlation between Peri-Implant Marginal Bone Loss Progression and Peri-Implant Sulcular Fluid Levels of Metalloproteinase-8. J. Pers. Med. 2022, 12, 58. [Google Scholar] [CrossRef]
- de Brandão, M.L.; Vettore, M.V.; Vidigal Júnior, G.M. Peri-implant bone loss in cement- and screw-retained prostheses: Systematic review and meta-analysis. J. Clin. Periodontol. 2013, 40, 287–295. [Google Scholar] [CrossRef]
- Penarrocha-Oltra, D.; Monreal-Bello, A.; Penarrocha-Diago, M.; Alonso-Perez-Barquero, J.; Botticelli, D.; Canullo, L. Microbial Colo-nization of the Peri-Implant Sulcus and Implant Connection of Implants Restored With Cemented Versus Screw-Retained Su-perstructures: A Cross-Sectional Study. J. Periodontol. 2016, 87, 1002–1011. [Google Scholar] [CrossRef]
- Korsch, M.; Walther, W.; Marten, S.M.; Obst, U. Microbial analysis of biofilms on cement surfaces: An investigation in ce-ment-associated peri-implantitis. J. Appl. Biomater Funct. Mater. 2014, 5, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Kurt, A.; Altintas, S.H.; Kiziltas, M.V.; Tekkeli, S.E.; Guler, E.M.; Kocyigit, A.; Usumez, A. Evaluation of residual monomer release and toxicity of self-adhesive resin cements. Dent. Mater. J. 2018, 37, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potiprapanpong, W.; Thepveera, W.; Khamsuk, C.; Channasanon, S.; Tanodekaew, S.; Patntirapong, S.; Monmaturapoj, N.; Panpisut, P. Monomer Conversion, Dimensional Stability, Biaxial Flexural Strength, Ion Release, and Cytotoxicity of Resin-Modified Glass Ionomer Cements Containing Methacrylate-Functionalized Polyacids and Spherical Pre-Reacted Glass Fillers. Polymers 2021, 13, 2742. [Google Scholar] [CrossRef]
- Jan, Y.-D.; Lee, B.-S.; Lin, C.-P.; Tseng, W.-Y. Biocompatibility and cytotoxicity of two novel low-shrinkage dental resin matrices. J. Formos. Med. Assoc. 2014, 113, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, R.; Reda, R.; Di Nardo, D.; Miccoli, G.; Zanza, A.; Testarelli, L. In Vitro Direct and Indirect Cytotoxicity Comparative Analysis of One Pre-Hydrated versus One Dried Acellular Porcine Dermal Matrix. Materials 2022, 15, 1937. [Google Scholar] [CrossRef]
- D’Haese, J.; Ackhurst, J.; Wismeijer, D.; De Bruyn, H.; Tahmaseb, A. Current state of the art of computer-guided implant surgery. Periodontology 2017, 73, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Di Gianfilippo, R.; Askar, H.; Henderson, J.; Franceschi, D.; Wang, H.L.; Wang, C.W.; Wang, J.C.W. Intra- and Interexaminer Repeatability of Diagnostic Peri-Implant Clinical Measurement: A Pilot Study. J. Oral Implantol. 2022, 1, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Abduljabbar, T.; Al-Sahaly, F.; Al-Kathami, M.; Afzal, S.; Vohra, F. Comparison of periodontal and peri-implant inflammatory pa-rameters among patients with prediabetes, type 2 diabetes mellitus and non-diabetic controls. Acta Odontol. Scand. 2017, 75, 19–324. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Reda, R.; Zanza, A.; Galli, M.; De Biase, A.; Testarelli, L.; Di Nardo, D. Applications and Clinical Behavior of BioHPP in Prosthetic Dentistry: A Short Review. J. Compos. Sci. 2022, 6, 90. [Google Scholar] [CrossRef]
- Schünemann, F.H.; Galárraga-Vinueza, M.E.; Magini, R.; Fredel, M.; Silva, F.; Souza, J.C.; Zhang, Y.; Henriques, B. Zirconia surface modifications for implant dentistry. Mater. Sci. Eng. C 2019, 98, 1294–1305. [Google Scholar] [CrossRef]
- Sadowsky, S.J. Has zirconia made a material difference in implant prosthodontics? A review. Dent. Mater. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Linkevicius, T.; Vindasiute, E.; Puisys, A.; Linkeviciene, L.; Maslova, N.; Puriene, A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin. Oral Implant. Res. 2012, 24, 71–76. [Google Scholar] [CrossRef]
- Reda, R.; Zanza, A.; Di Nardo, D.; Bellanova, V.; Xhajanka, E.; Testarelli, L. Implant Survival Rate and Prosthetic Complications of OT Equator Retained Maxillary Overdenture: A Cohort Study. Prosthesis 2022, 4, 730–738. [Google Scholar] [CrossRef]
- Korsch, M.; Marten, S.-M.; Walther, W.; Vital, M.; Pieper, D.H.; Dötsch, A. Impact of dental cement on the peri-implant biofilm-microbial comparison of two different cements in an in vivo observational study. Clin. Implant. Dent. Relat. Res. 2018, 20, 806–813. [Google Scholar] [CrossRef]
- Wolfart, S.; Rittich, A.; Groß, K.; Hartkamp, O.; von der Stück, A.; Raith, S.; Reich, S. Cemented versus screw-retained posterior im-plant-supported single crowns: A 24-month randomized controlled clinical trial. Clin. Oral Implants Res. 2021, 32, 1484–1495. [Google Scholar] [CrossRef] [PubMed]
- Woelber, J.P.; Ratka-Krueger, P.; Frisch, E.; Vach, K. Decementation Rates and the Peri-Implant Tissue Status of Implant-Supported Fixed Restorations Retained via Zinc Oxide Cement: A Retrospective 10-23-Year Study. Clin. Implant. Dent. Relat. Res. 2015, 18, 917–925. [Google Scholar] [CrossRef] [PubMed]
Tooth | Decementation Frequency | Patient Age/Sex | ||
---|---|---|---|---|
1 | 3.8 × 10.5 | 3.6 (I) | 0 | 36 (M) |
2 | 3.8 × 10.5 | 3.6 (I) | 0 | 38 (F) |
3 | 3.8 × 10.5 | 4.6 (T) | 0 | 42 (F) |
4 | 3.8 × 12 | 3.6 (I) | 0 | 50 (M) |
5 | 3.8 × 12 | 3.6 (T) | 1 (24 months) | 33 (F) |
6 | 3.8 × 12 | 3.6 (I) | 0 | 28 (M) |
7 | 3.8 × 12 | 3.6 (I) | 0 | 44 (F) |
8 | 3.8 × 12 | 3.6 (T) | 0 | 47 (F) |
9 | 3.8 × 12 | 4.6 (I) | 1 (36 months) | 25 (M) |
10 | 3.8 × 12 | 4.6 (I) | 0 | 36 (M) |
11 | 3.8 × 12 | 4.6 (T) | 0 | 36 (M) |
12 | 4.2 × 9 | 4.6 (I) | 0 | 47 (F) |
13 | 4.2 × 9 | 3.6 (I) | 1 (38 months) | 30 (F) |
14 | 4.2 × 9 | 4.6 (T) | 0 | 28 (M) |
15 | 4.2 × 9 | 4.6 (I) | 0 | 40 (F) |
16 | 4.2 × 10.5 | 3.6 (T) | 1 (36 months) | 25 (M) |
17 | 4.2 × 10.5 | 3.6 (I) | 0 | 42 (F) |
18 | 4.2 × 10.5 | 3.6 (T) | 0 | 26 (M) |
19 | 4.2 × 10.5 | 4.6 (T) | 0 | 42 (F) |
20 | 4.2 × 10.5 | 4.6 (I) | 0 | 25 (M) |
21 | 4.2 × 12 | 3.6 (I) | 0 | 40 (F) |
22 | 4.2 × 12 | 3.6 (T) | 0 | 25 (M) |
23 | 4.2 × 12 | 4.6 (I) | 1 (44 months) | 26 (M) |
24 | 4.2 × 12 | 4.6 (T) | 0 | 44 (F) |
25 | 4.2 × 12 | 4.6 (T) | 0 | 38 (F) |
26 | 4.6 × 7.5 | 3.6 (T) | 1 (36 months) | 28 (F) |
27 | 4.6 × 7.5 | 3.6 (T) | 0 | 32 (M) |
28 | 4.6 × 7.5 | 3.6 (T) | 0 | 40 (F) |
29 | 4.6 × 7.5 | 3.6 (I) | 0 | 42 (F) |
30 | 4.6 × 7.5 | 4.6 (I) | 0 | 33 (F) |
31 | 4.6 × 7.5 | 4.6 (T) | 0 | 50 (M) |
32 | 4.6 × 7.5 | 4.6 (T) | 0 | 30 (F) |
33 | 4.6 × 7.5 | 4.6 (T) | 0 | 40 (F) |
34 | 4.6 × 7.5 | 4.6 (I) | 0 | 32 (M) |
35 | 4.6 × 10.5 | 3.6 (T) | 1 (30 months) | 36 (M) |
36 | 4.6 × 10.5 | 4.6 (I) | 0 | 28 (F) |
N. Fixture | Survival Rate | PI | GI | PD | BOP | REC | MBL—Mesial | MBL—Distal | |
---|---|---|---|---|---|---|---|---|---|
3.8 (TB) | 4 | 100% | 0.24 ± 0.30 | 1.14 ± 0.38 | 2.44 ± 0.38 | 0.24 ± 0.30 | 0.7 ± 0.2 | 1.2 ± 0.6 mm | 1.3 ± 0.7 mm |
4.2 (TB) | 7 | 100% | 0.23 ± 0.31 | 1.25 ± 0.33 | 2.14 ± 0.33 | 0.23 ± 0.30 | 0.6 ± 0.2 | 1.3 ± 0.7 mm | 1.4 ± 0.6 mm |
4.6 (TB) | 7 | 100% | 0.20 ± 0.18 | 1.14 ± 0.34 | 2.22 ± 0.38 | 0.22 ± 0.28 | 0.6 ± 0.2 | 1.2 ± 0.7 mm | 1.3 ± 0.7 mm |
3.8 (I) | 7 | 100% | 0.25 ± 0.29 | 1.28 ± 0.34 | 2.84 ± 0.28 | 0.24 ± 0.30 | 0.8 ± 0.2 | 1.6 ± 0.9 mm | 1.7 ± 0.9 mm |
4.2 (I) | 7 | 100% | 0.24 ± 0.30 | 1.24 ± 0.38 | 2.60 ± 0.30 | 0.26 ± 0.28 | 0.8 ± 0.2 | 1.5 ± 0.9 mm | 1.6 ± 1.2 mm * |
4.6 (I) | 4 | 100% | 0.20 ± 0.19 | 1.16 ± 0.38 | 2.53 ± 0.22 | 0.28 ± 0.30 | 0.7 ± 0.2 | 1.6 ± 0.8 mm | 1.6 ± 0.9 mm * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reda, R.; Zanza, A.; Bellanova, V.; Patil, S.; Bhandi, S.; Di Nardo, D.; Testarelli, L. Zinc Oxide Non-Eugenol Cement versus Resinous Cement on Single Implant Restoration: A Split-Mouth Study. J. Compos. Sci. 2023, 7, 128. https://doi.org/10.3390/jcs7030128
Reda R, Zanza A, Bellanova V, Patil S, Bhandi S, Di Nardo D, Testarelli L. Zinc Oxide Non-Eugenol Cement versus Resinous Cement on Single Implant Restoration: A Split-Mouth Study. Journal of Composites Science. 2023; 7(3):128. https://doi.org/10.3390/jcs7030128
Chicago/Turabian StyleReda, Rodolfo, Alessio Zanza, Valentina Bellanova, Shankargouda Patil, Shilpa Bhandi, Dario Di Nardo, and Luca Testarelli. 2023. "Zinc Oxide Non-Eugenol Cement versus Resinous Cement on Single Implant Restoration: A Split-Mouth Study" Journal of Composites Science 7, no. 3: 128. https://doi.org/10.3390/jcs7030128
APA StyleReda, R., Zanza, A., Bellanova, V., Patil, S., Bhandi, S., Di Nardo, D., & Testarelli, L. (2023). Zinc Oxide Non-Eugenol Cement versus Resinous Cement on Single Implant Restoration: A Split-Mouth Study. Journal of Composites Science, 7(3), 128. https://doi.org/10.3390/jcs7030128