Fast Charging of a Thermal Accumulator Based on Paraffin with the Addition of 0.3 wt. % rGO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining a Composite Paraffin/rGO
2.3. Equipment
3. Results
3.1. Photo of the Cuts
3.2. IR Spectra
3.3. Raman Spectra
3.4. TG + DSC
4. Discussion
4.1. About Burning Pure Paraffin and Composite
4.2. About Heat Battery Charging
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aftab, W.; Huang, X.; Wu, W.; Liang, Z.; Mahmood, A.; Zou, R. Nanoconfined Phase Change Materials for Thermal Energy Applications. Energy Environ. Sci. 2018, 11, 1392–1424. [Google Scholar] [CrossRef]
- Shchukina, E.M.; Graham, M.; Zheng, Z.; Shchukin, D.G. Nanoencapsulation of Phase Change Materials for Advanced Thermal Energy Storage Systems. Chem. Soc. Rev. 2018, 47, 4156–4175. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, X.; Li, A.; Atinafu, D.; Gao, H.; Dong, W.; Wang, G. Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications. Chem. Eng. J. 2019, 356, 641–661. [Google Scholar] [CrossRef]
- Mitran, R.-A.; Ioniţǎ, S.; Lincu, D.; Berger, D.; Matei, C. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications. Molecules 2021, 26, 241. [Google Scholar] [CrossRef] [PubMed]
- Lawag, R.A.; Ali, H.M. Phase Change Materials for Thermal Management and Energy Storage: A Review. J. Energy Storage 2022, 55, 105602. [Google Scholar] [CrossRef]
- Voronin, D.V.; Ivanov, E.; Gushchin, P.; Fakhrullin, R.; Vinokurov, V. Clay Composites for Thermal Energy Storage: A Review. Molecules 2020, 25, 1504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cheng, H.; Wang, C.; Zhou, Y. Kaolinite Nanotube-Stearic Acid Composite as a Form-Stable Phase Change Material for Thermal Energy Storage. Appl. Clay Sci. 2021, 201, 105930. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, R.; Wang, C.; Feng, L.; Li, S.; Gong, Y. Preparation and Characterization of Microencapsulated Phase Change Materials for Solar Heat Collection. Energies 2022, 15, 5354. [Google Scholar] [CrossRef]
- Paul, J.; Pandey, A.K.; Mishra, Y.N.; Said, Z.; Mishra, Y.K.; Ma, Z.; Jacob, J.; Kadirgama, K.; Samykano, M.; Tyagi, V.V. Nano-Enhanced Organic Form Stable PCMs for Medium Temperature Solar Thermal Energy Harvesting: Recent Progresses, Challenges, and Opportunities. Renew. Sustain. Energy Rev. 2022, 161, 112321. [Google Scholar] [CrossRef]
- Sikiru, S.; Oladosu, T.L.; Amosa, T.I.; Kolawole, S.Y.; Soleimani, H. Recent Advances and Impact of Phase Change Materials on Solar Energy: A Comprehensive Review. J. Energy Storage 2022, 53, 105200. [Google Scholar] [CrossRef]
- Ji, W.; Cheng, X.; Chen, S.; Wang, X.; Li, Y. Self-Assembly Fabrication of GO/TiO2@paraffin Microcapsules for Enhancement of Thermal Energy Storage. Powder Technol. 2021, 385, 546–556. [Google Scholar] [CrossRef]
- Jegadheeswaran, S.; Pohekar, S.D. Performance Enhancement in Latent Heat Thermal Storage System: A Review. Renew. Sustain. Energy Rev. 2009, 13, 2225–2244. [Google Scholar] [CrossRef]
- Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B.H.; Min, D.-H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wu, L.; Qu, X. New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide. Adv. Mater. 2013, 25, 168–186. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Zamani, P.; Yu, A.; Chen, Z. The Application of Graphene and Its Composites in Oxygen Reduction Electrocatalysis: A Perspective and Review of Recent Progress. Energy Environ. Sci. 2016, 9, 357–390. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. Adv. Mater. 2019, 31, e1800662. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, X.; Li, J. Graphene Lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of Graphene in Energy Storage Device—A Review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Li, J.; Ge, X.; Zhao, Z.; Wang, W. Quantum Dots of Graphene Oxide as Nano-Additives Trigger Macroscale Superlubricity with an Extremely Short Running-in Period. Mater. Today Nano 2022, 18, 100219. [Google Scholar] [CrossRef]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials 2022, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Chai, Z.; Shi, Q.; Liu, Y.; Wang, W. Graphene Superlubricity: A Review. Friction 2023, 1–21. [Google Scholar] [CrossRef]
- Mehrali, M.; Latibari, S.T.; Mehrali, M.; Metselaar, H.S.C.; Silakhori, M. Shape-Stabilized Phase Change Materials with High Thermal Conductivity Based on Paraffin/graphene Oxide Composite. Energy Convers. Manage. 2013, 67, 275–282. [Google Scholar] [CrossRef]
- Dsilva Winfred Rufuss, D.; Suganthi, L.; Iniyan, S.; Davies, P.A. Effects of Nanoparticle-Enhanced Phase Change Material (NPCM) on Solar Still Productivity. J. Clean. Prod. 2018, 192, 9–29. [Google Scholar] [CrossRef]
- Lokesh, S.; Murugan, P.; Sathishkumar, A.; Kumaresan, V.; Velraj, R. Melting/solidification Characteristics of Paraffin Based Nanocomposite for Thermal Energy Storage Applications. Therm. Sci. 2017, 21, 2517–2524. [Google Scholar] [CrossRef]
- Baskakov, S.A.; Baskakova, Y.V.; Kalmykova, D.S.; Komarov, B.A.; Krasnikova, S.S.; Shul’ga, Y.M. Comparison of the Electrode Properties of Graphene Oxides Reduced Chemically, Thermally, or via Microwave Irradiation. Inorg. Mater. 2021, 57, 262–268. [Google Scholar] [CrossRef]
- Memon, S.A.; Liao, W.; Yang, S.; Cui, H.; Shah, S.F.A. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials. Materials 2015, 8, 499–518. [Google Scholar] [CrossRef]
- Meuse, C.W.; Barker, P.E. Quantitative Infrared Spectroscopy of Formalin-Fixed, Paraffin-Embedded Tissue Specimens: Paraffin Wax Removal with Organic Solvents. Appl. Immunohistochem. Mol. Morphol. 2009, 17, 547–552. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, D. Application Potential of Graphene Aerogel in Paraffin Phase Change Composites: Experimental Study and Guidance Based on Numerical Simulation. Sol. Energy Mater. Sol. Cells 2021, 223, 110949. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Velamakanni, A.; Piner, R.D.; Ruoff, R.S. Microwave Assisted Exfoliation and Reduction of Graphite Oxide for Ultracapacitors. Carbon N. Y. 2010, 48, 2118–2122. [Google Scholar] [CrossRef]
- Shulga, Y.M.; Baskakov, S.A.; Knerelman, E.I.; Davidova, G.I.; Badamshina, E.R.; Shulga, N.Y.; Skryleva, E.A.; Agapov, A.L.; Voylov, D.N.; Sokolov, A.P.; et al. Carbon Nanomaterial Produced by Microwave Exfoliation of Graphite Oxide: New Insights. RSC Adv. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Alsharaeh, E.H.; Othman, A.A.; Aldosari, M.A. Microwave Irradiation Effect on the Dispersion and Thermal Stability of RGO Nanosheets within a Polystyrene Matrix. Materials 2014, 7, 5212–5224. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, F.; Hikmah, U.; Stavila, E.; Aimon, A.H. Microwave-Assisted Reduction Method under Nitrogen Atmosphere for Synthesis and Electrical Conductivity Improvement of Reduced Graphene Oxide (rGO). RSC Adv. 2017, 7, 52391–52397. [Google Scholar] [CrossRef]
- Qiu, J.; Liao, J.; Wang, G.; Du, R.; Tsidaeva, N.; Wang, W. Implanting N-Doped CQDs into rGO Aerogels with Diversified Applications in Microwave Absorption and Wastewater Treatment. Chem. Eng. J. 2022, 443, 136475. [Google Scholar] [CrossRef]
- Ossonon, B.D.; Bélanger, D. Synthesis and Characterization of Sulfophenyl-Functionalized Reduced Graphene Oxide Sheets. RSC Adv. 2017, 7, 27224–27234. [Google Scholar] [CrossRef]
- Luo, Y.; Xiong, S.; Huang, J.; Zhang, F.; Li, C.; Min, Y.; Peng, R.; Liu, Y. Preparation, Characterization and Performance of Paraffin/sepiolite Composites as Novel Shape-Stabilized Phase Change Materials for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2021, 231, 111300. [Google Scholar] [CrossRef]
- Suyitno, B.M.; Rahmalina, D.; Rahman, R.A. Increasing the Charge/discharge Rate for Phase-Change Materials by Forming Hybrid Composite Paraffin/ash for an Effective Thermal Energy Storage System. AIMS Mater. Sci. 2023, 10, 70–85. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach. Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd.: New York, NY, USA, 2000. [Google Scholar]
- Su, Y.-L.; Wang, J.; Liu, H.-Z. FTIR Spectroscopic Study on Effects of Temperature and Polymer Composition on the Structural Properties of PEO−PPO−PEO Block Copolymer Micelles. Langmuir 2002, 18, 5370–5374. [Google Scholar] [CrossRef]
- Memon, S.A.; Lo, T.Y.; Barbhuiya, S.A.; Xu, W. Development of Form-Stable Composite Phase Change Material by Incorporation of Dodecyl Alcohol into Ground Granulated Blast Furnace Slag. Energy Build. 2013, 62, 360–367. [Google Scholar] [CrossRef]
- Stein, R.S.; Sutherland, G.B.B.M. Effect of Intermolecular Interactions between CH Frequencies on the Infrared Spectra of N-Paraffins and Polythene. J. Chem. Phys. 1954, 22, 1993–1999. [Google Scholar] [CrossRef]
- Faoláin, E.Ó.; Hunter, M.B.; Byrne, J.M.; Kelehan, P.; Lambkin, H.A.; Byrne, H.J.; Lyng, F.M. Raman spectroscopic evaluation of efficacy of current paraffin wax section dewaxing agents. J. Histochem. Cytochem. 2005, 53, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Du, W. Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: A Raman spectroscopy study. Vib. Spectrosc. 2006, 40, 219–224. [Google Scholar] [CrossRef]
- Špaldonová, A.; Havelcová, M.; Lapcák, L.; Machovic, V.; Titera, D. Analysis of beeswax adulteration with paraffin using GC/MS, FTIR-ATR and Raman spectroscopy. J. Apic. Res. 2021, 60, 73–83. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Wu, H.; Guo, S. Construction of hybrid graphene oxide/graphene nanoplates shell in paraffin microencapsulated phase change materials to improve thermal conductivity for thermal energy storage. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124780. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D. Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. ACS Sustain. Chem. Eng. 2017, 5, 4906–4915. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Martins Ferreira, E.H.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Dashairya, L.; Sharma, M.; Basu, S.; Saha, P. SnS2/RGO Based Nanocomposite for Efficient Photocatalytic Degradation of Toxic Industrial Dyes under Visible-Light Irradiation. J. Alloys Compd. 2019, 774, 625–636. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Yang, W.B.; Zhang, L.; Guo, Y.L.; Jiang, Z.N.; He, F.F.; Xie, C.Q. Novel segregatedstructure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity. J. Mater. Sci. 2018, 53, 2566–2575. [Google Scholar] [CrossRef]
Sample | Peak | Pos, cm–1 | FWHM, cm–1 | Int, % |
---|---|---|---|---|
rGO | D* | 1114.2 | 156 | 6.2 |
D | 1348.5 | 192 | 38.9 | |
D” | 1520.0 | 143 | 16.8 | |
G | 1587.1 | 120 | 27.5 | |
D’ | 1613.3 | 35 | 10.3 | |
Paraffin/rGO | D* | 1144.2 | 64 | 5.2 |
D | 1365.9 | 78 | 60.1 | |
D” | 1520.2 | 52 | 9.7 | |
G | 1584.0 | 51 | 22.4 | |
D’ | 1604.1 | 77 | 2.7 |
Sample | TpM (°C) | ΔHM (J/g) | TpS (°C) | ΔHS (J/g) |
---|---|---|---|---|
Paraffin | 61, 83 | 182.31 | 57, 86 | 181.86 |
Composite paraffin/rGO | 61, 72 | 184.08 | 58, 57 | 185.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskakov, S.A.; Baskakova, Y.V.; Kabachkov, E.N.; Dvoretskaya, E.V.; Vasilets, V.N.; Li, Z.; Shulga, Y.M. Fast Charging of a Thermal Accumulator Based on Paraffin with the Addition of 0.3 wt. % rGO. J. Compos. Sci. 2023, 7, 193. https://doi.org/10.3390/jcs7050193
Baskakov SA, Baskakova YV, Kabachkov EN, Dvoretskaya EV, Vasilets VN, Li Z, Shulga YM. Fast Charging of a Thermal Accumulator Based on Paraffin with the Addition of 0.3 wt. % rGO. Journal of Composites Science. 2023; 7(5):193. https://doi.org/10.3390/jcs7050193
Chicago/Turabian StyleBaskakov, Sergey A., Yulia V. Baskakova, Eugene N. Kabachkov, Elizaveta V. Dvoretskaya, Victor N. Vasilets, Zhi Li, and Yury M. Shulga. 2023. "Fast Charging of a Thermal Accumulator Based on Paraffin with the Addition of 0.3 wt. % rGO" Journal of Composites Science 7, no. 5: 193. https://doi.org/10.3390/jcs7050193
APA StyleBaskakov, S. A., Baskakova, Y. V., Kabachkov, E. N., Dvoretskaya, E. V., Vasilets, V. N., Li, Z., & Shulga, Y. M. (2023). Fast Charging of a Thermal Accumulator Based on Paraffin with the Addition of 0.3 wt. % rGO. Journal of Composites Science, 7(5), 193. https://doi.org/10.3390/jcs7050193