An Optimal Selection of the Clamping Fixture for Manufacturing an I-Shaped Composite Beam
Abstract
:1. Introduction
- Provide processing quality;
- Improve productivity and reduce cost;
- Expand the scope of machining.
- The clamping of the fixture must be stable and reliable;
- The fixture must be of good operability;
- The fixture must deliver sufficient holding strength and stiffness;
- The fixture design must be reasonably economical while meeting the requirements of sufficient strength and rigidity.
2. Design of the Fixture with Different Spacing
2.1. The Finite Element Model
2.2. Analysis Principle
2.2.1. Modal Analysis
2.2.2. Frequency Response Analysis
2.2.3. Random Response Analysis
2.3. Dynamic Analysis Results
2.3.1. Modal Analysis Results
2.3.2. Results of Frequency Response Analysis
2.3.3. Random Response Analysis Results
2.3.4. Discussion
3. The Proposed Fixture Design
3.1. The Analysis Model
3.1.1. The Static Model
3.1.2. The Dynamic Model
3.2. The Analysis Principle
3.2.1. The Principle of Static Analysis
3.2.2. The Principle of Dynamic Analysis
3.3. Results
3.3.1. Results for Statics
3.3.2. Dynamic Analysis Results
- Modal analysis results
- 2.
- Results of Frequency Response Analysis
- 3.
- Random Response Analysis Results
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shenoy, P.; Nithesh, N.; Shettar, M.; Abbas, W. Design and Analysis of Split Fixture for Gear Hobbing Machine. MATEC Web Conf. 2018, 144, 8–15. [Google Scholar] [CrossRef]
- Olabanji, O.; Mpofu, K.; Battaïa, O. Design, simulation and experimental investigation of a novel reconfigurable assembly fixture for press brakes. Int. J. Adv. Manuf. Technol. 2016, 82, 663–679. [Google Scholar] [CrossRef]
- Amaral, N.; Rencis, J.J.; Rong, Y. Development of a finite element analysis tool for fixture design integrity verification and optimisation. Int. J. Adv. Manuf. Technol. 2005, 25, 409–419. [Google Scholar] [CrossRef]
- Khan, A.A.; Moeenuddin, G.; Kazim, A.H.; Kamran, M.S.; Asim, M. An integrated system for process-fixture layout design optimisation for cubical parts. South Afr. J. Ind. Eng. 2019, 30, 83–99. [Google Scholar] [CrossRef]
- Xing, Y. Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms. J. Manuf. Sci. Eng. 2017, 139, 101004. [Google Scholar] [CrossRef]
- Xing, Y.; Hu, M.; Zeng, H.; Wang, Y. Fixture layout optimisation based on a non-domination sorting social radiation algorithm for auto-body parts. Int. J. Prod. Res. 2015, 53, 3475–3490. [Google Scholar] [CrossRef]
- Xiong, L.; Molfino, R.; Zoppi, M. Fixture layout optimization for flexible aerospace parts based on self-reconfigurable swarm intelligent fixture system. Int. J. Adv. Manuf. Technol. 2013, 66, 1305–1313. [Google Scholar] [CrossRef]
- Illidge, A.; Bright, G. An Automated Flexible Fixture System for Mass Customisation. South Afr. J. Ind. Eng. 2018, 29, 21–34+14. [Google Scholar]
- Ramnath, B.V.; Elanchezhian, C.; Rajesh, S.; Prakash, S.J.; Kumaar, B.M.; Rajeshkannan, K. Design and Development of Milling Fixture for Friction Stir Welding. Mater. Today Proc. 2018, 5, 1832–1838. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, C.; Zhou, H.; Zhou, Y. Investigation on fixture design and precision stability of new-type double collect chuck for machining of long ladder shaft gear. J. Mech. Sci. Technol. 2019, 33, 323–332. [Google Scholar] [CrossRef]
- Yu, K.; Wang, S.; Wang, Y.; Yang, Z. A flexible fixture design method research for similar automotive body parts of different automobiles. Adv. Mech. Eng. 2018, 10, 1687814018761272. [Google Scholar] [CrossRef]
- Zhang, F.P.; Wu, D.; Zhang, T.H.; Yan, Y.; Butt, S.I. Knowledge component-based intelligent method for fixture design. Int. J. Adv. Manuf. Technol. 2018, 94, 4139–4157. [Google Scholar] [CrossRef]
- Denkena, B.; Bergmann, B.; Kiesner, J. Increasing the Measuring Accuracy of a Sensory Swing Clamp by Multi-Sensor Evaluation. J. Manuf. Sci. Eng. 2019, 141, 111007. [Google Scholar] [CrossRef]
- MSC. SOFTWARE Corporation. MSC. Nastran Preference Guide Vol. 1, Structural Analysis. Santa Ana CA: [s. n.]. 2010. Available online: https://www.scribd.com/document/74993284/Nastran-Preference-Guide-Volume-1-Structural-Analysis (accessed on 18 August 2023).
- Qiu, J.; Lian, W.; Rao, H.; Wang, C.; Luo, T.; Tang, J. Localization of Vibration Weak Position of Composites Based on Weighted Modal Strain Energy Summation. J. Compos. Sci. 2022, 6, 324. [Google Scholar] [CrossRef]
Mechanics Properties | E1 (GPa) | E2 (GPa) | E3 (GPa) | G12 (GPa) | G13 (GPa) | G23 (GPa) | |||
---|---|---|---|---|---|---|---|---|---|
Parameters | 169 | 4.49 | 4.49 | 1.628 | 1.628 | 0.5435 | 0.33 | 0.33 | 0.45 |
Items | Parameters |
---|---|
Lamination, ° (t1) | [+45/−45/0/0/0/−45/0/0/0/+45] |
Thickness, mm (t1) | 1.85 |
Web lamination, ° (2 × t2) | [+45/−45/0/0/−45/0/0/+45] |
Thickness, mm (2 × t2) | 2.96 |
Flange lamination, ° (t2) | [+45/−45/0/0/−45/0/0/+45] |
Flange thickness, mm (t2) | 1.48 |
Reinforcement area, ° | [±45] |
Flange thickness, mm (t3) | 0.37 |
L1, mm | 13 |
L2, mm | 23 |
L3, mm | 23 |
H, mm | 30 |
H(total), mm | 35.18 |
Cases | Case 1 (Hz) | Case 2 (Hz) | Differences (%) |
---|---|---|---|
1st mode | 546.63 | 848.19 | ↑ 55.16711 |
2nd mode | 628.59 | 901.99 | ↑ 43.49417 |
3rd mode | 704.81 | 914.97 | ↑ 29.81797 |
4th mode | 733.71 | 926.52 | ↑ 26.27877 |
5th mode | 794.12 | 934.12 | ↑ 17.62958 |
6th mode | 811.84 | 1016.9 | ↑ 25.25867 |
7th mode | 942.03 | 1068.8 | ↑ 13.45711 |
8th mode | 1073.7 | 1093.3 | ↑ 1.825463 |
9th mode | 1214.4 | 1101.1 | ↓ 9.32971 |
10th mode | 1319.9 | 1232.7 | ↓ 6.60656 |
Cases | Displacement (m) | Acceleration (m/s2) | Frequency (Hz) |
---|---|---|---|
Case 1 | 1.0 | 1.0 | 83.3344 |
Case 2 | 0.9927 | 0.9947 | |
Case 1 | 1.0 | 1.0 | 875.0017 |
Case 2 | 1.0247 | 1.0255 |
Cases | Case 3 | Case 4 | Difference (%) |
---|---|---|---|
Displacement (mm) | 1.2 | 1.06 | ↓ 13.21 |
Stress (MPa) | 55.6 | 50.4 | ↓ 10.32 |
Strain () | 378 | 288 | ↓ 31.25 |
Cases | Case 1 (Hz) | Case 5 (Hz) | Difference (%) |
---|---|---|---|
1st mode | 546.63 | 891.33 | ↑ 63.05910762 |
2nd mode | 628.59 | 927.18 | ↑ 47.50155109 |
3rd mode | 704.81 | 964.44 | ↑ 36.83687802 |
4th mode | 733.71 | 1103.9 | ↑ 50.45453926 |
5th mode | 794.12 | 1245.3 | ↑ 56.81509092 |
6th mode | 811.84 | 1436.5 | ↑ 76.94373276 |
7th mode | 942.03 | 1443.9 | ↑ 53.2753734 |
8th mode | 1073.7 | 1472.4 | ↑ 37.13327745 |
9th mode | 1214.4 | 1489.6 | ↑ 22.66139657 |
10th mode | 1319.9 | 1506.7 | ↑ 14.15258732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Sun, C.; Rao, H.; Gong, Y.; Tang, J. An Optimal Selection of the Clamping Fixture for Manufacturing an I-Shaped Composite Beam. J. Compos. Sci. 2023, 7, 369. https://doi.org/10.3390/jcs7090369
Qiu J, Sun C, Rao H, Gong Y, Tang J. An Optimal Selection of the Clamping Fixture for Manufacturing an I-Shaped Composite Beam. Journal of Composites Science. 2023; 7(9):369. https://doi.org/10.3390/jcs7090369
Chicago/Turabian StyleQiu, Ju, Chundu Sun, Huaxiang Rao, Youhong Gong, and Jiali Tang. 2023. "An Optimal Selection of the Clamping Fixture for Manufacturing an I-Shaped Composite Beam" Journal of Composites Science 7, no. 9: 369. https://doi.org/10.3390/jcs7090369
APA StyleQiu, J., Sun, C., Rao, H., Gong, Y., & Tang, J. (2023). An Optimal Selection of the Clamping Fixture for Manufacturing an I-Shaped Composite Beam. Journal of Composites Science, 7(9), 369. https://doi.org/10.3390/jcs7090369