Finite Element Study on Stability in the Femoral Neck and Head Connection to Varying Geometric Parameters with the Relates Implications on the Effect of Wear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modelling of Hip Implants
2.2. Boundary and Loading Conditions with the Finite Element Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharkey, P.F.; Austin, M.S.; Hozack, W. Total hip arthroplasty in the young patient. Instr. Course Lect. 2006, 55, 173–176. [Google Scholar] [PubMed]
- Friedman, R.J.; Black, J.; Galante, J.O.; Jacobs, J.J.; Skinner, H.B. Current concepts in orthopedic biomaterials and implant fixation. Instr. Course Lect. 1994, 43, 233–255. [Google Scholar] [PubMed]
- Osman, K.; Panagiotidou, A.P.; Khan, M.; Blunn, G.; Haddad, F.S. Corrosion at the head-neck interface of current designs of modular femoral components: Essential questions and answers relating to corrosion in modular head-neck junctions. Bone Jt. J. 2016, 98, 579–584. [Google Scholar] [CrossRef]
- Punzi, N. Contact Analysis in “Hard-on-Hard” Hip Replacements. Master’s Thesis, Department of Information Engineering, University of Pisa, Pisa, Italy, 2013. [Google Scholar]
- Bergmann, G.; Graichen, F.; Rohlmann, A. Hip joint loading during walking and running, measured in two patients. J. Biomech. 1993, 26, 969–990. [Google Scholar] [CrossRef]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Bech, N.H.; Haverkamp, D. Impingement around the hip: Beyond cam and pincer. EFORT Open Rev. 2018, 3, 30–38. [Google Scholar] [CrossRef]
- Vassalou, E.E.; Zibis, A.H.; Klontzas, M.E.; Karantanas, A.H. Imaging of impingement syndromes around the hip joint. HIP Int. 2017, 27, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Achar, S.; Yamanaka, J. Apophysitis and osteochondrosis: Common causes of pain in growing bones. Am. Fam. Physician 2019, 99, 610–618. [Google Scholar]
- Garcia-Montoya, L.; Gul, H.; Emery, P. Recent advances in ankylosing spondylitis: Understanding the disease and management. F1000Research 2018, 7, 1512. [Google Scholar] [CrossRef]
- Thomas, G.P.; Brown, M.A. Genetics and genomics of ankylosing spondylitis. Immunol. Rev. 2010, 233, 162–180. [Google Scholar] [CrossRef]
- Sugano, N.; Takao, M.; Sakai, T.; Nishii, T.; Miki, H.; Nakamura, N. Comparison of mini-incision total hip arthroplasty through an anterior approach and a posterior approach using navigation. Orthop. Clin. N. Am. 2009, 40, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Treacy, R.B.; McBryde, C.W.; Pynsent, P.B. Birmingham hip resurfacing arthroplasty. A minimum follow-up of five years. J. Bone Jt. Surg. Br. 2005, 87, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Merola, M.; Affatato, S. Materials for Hip Prostheses: A Review of Wear and Loading Considerations. Materials 2019, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Tsikandylakis, G.; Mohaddes, M.; Cnudde, P.; Eskelinen, A.; Kärrholm, J.; Rolfson, O. Head size in primary total hip arthroplasty. EFORT Open Rev. 2018, 3, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, I.; Morita, Y.; Ito, Y.; Gejo, R.; Kimura, T. Activities of daily living after total hip arthroplasty. Is a 32-mm femoral head superior to a 26-mm head for improving daily activities? Int. Orthop. 2011, 35, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Delay, C.; Putman, S.; Dereudre, G.; Girard, J.; Lancelier-Bariatinsky, V.; Drumez, E.; Migaud, H. Is there any range-of-motion advantage to using bearings larger than 36 mm in primary hip arthroplasty: A case-control study comparing 36-mm and large-diameter heads. Orthop. Traumatol. Surg. Res. 2016, 102, 735–740. [Google Scholar] [CrossRef]
- Pijls, B.G.; Meessen, J.M.T.A.; Tucker, K.; Stea, S.; Steenbergen, L.; Fenstad, A.M.; Mäkelä, K.; Stoica, I.C.; Goncharov, M.; Overgaard, S.; et al. MoM total hip replacements in Europe: A NORE report. EFORT Open Rev. 2019, 4, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Kocagöz, S.B.; Underwood, R.J.; Sivan, S.; Gilbert, J.L.; MacDonald, D.W.; Day, J.S.; Kurtz, S.M. Does taper angle clearance influence fretting and corrosion damage at the head{stem interface A matched cohort retrieval study. Semin. Arthroplast. 2013, 242, 246–254. [Google Scholar] [CrossRef]
- Kao, Y.-Y.J.; Koch, C.N.; Wright, T.M.; Padgett, D.E. Flexural rigidity, taper angle, and contact length affect fretting of the femoral stem trunnion in total hip arthroplasty. J. Arthroplast. 2016, 31 (Suppl. 9), 254–258. [Google Scholar] [CrossRef]
- Goldberg, J.R.; Gilbert, J.L. Electrochemical response of CoCrMo to high-speed fracture of its metal oxide using an electrochemical scratch test method. J. Biomed. Mater. Res. 1997, 37, 421–431. [Google Scholar] [CrossRef]
- Goldberg, J.R.; Gilbert, J.L.; Jacobs, J.J.; Bauer, T.W.; Paprosky, W.; Leurgans, S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Orthop. Relat. Res. 2002, 401, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.L.; Buckley, C.A.; Jacobs, J.J. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J. Biomed. Mater. Res. 1993, 27, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, H.J.; Ha, N.Q.; Hall, D.J.; Urban, R.M.; Levine, B.R.; Pourzal, R. Contact mechanics and plastic deformation at the local surface topography level after assembly of modular head-neck junctions in modern total hip replacement devices. In Modularity and Tapers in Total Joint Replacement Devices STP1591; Greenwald, S.A., Kurtz, S.M., Lemons, J.E., Milhalko, W.M., Eds.; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Ashkanfar, A.; Langton, D.J.; Joyce, T.J. A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis. J. Mech. Behav. Biomed. Mater. 2017, 69, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Choroszyński, M.; Choroszyński, M.R.; Skrzypek, S.J. Biomaterials for hip implants—Important considerations relating to the choice of materials. Bio-Algorithms Med-Syst. 2017, 13, 133–145. [Google Scholar] [CrossRef]
- Maruyama, N.; Kawasaki, H.; Yamamoto, A.; Hiromoto, S.; Imai, H.; Hanawa, T. Friction-Wear Properties of Nickel-Free Co-Cr-Mo Alloy in a Simulated Body Fluid. Mater. Trans. 2005, 46, 1588–1592. [Google Scholar] [CrossRef]
- OrthoLoad: Loading of the Orthopedic Implant. Available online: https://orthoload.com/ (accessed on 15 October 2022).
- Fallahnezhad, K.; Farhoudi, H.; Oskouei, R.H.; Taylor, M. Influence of geometry and materials on the axial and torsional strength of the head-neck taper junction in modular hip replacements: A finite element study. J. Mech. Behav. Biomed. Mater. 2016, 60, 118–126. [Google Scholar] [CrossRef]
- Feyzi, M.; Fallahnezhad, K.; Taylor, M.; Hashemi, R. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants. Comput. Biol. Med. 2021, 130, 104196. [Google Scholar] [CrossRef]
- Guzmán, M.; Durazo, E.; Ortiz, A.; Sauceda, I.; Siqueiros, M.; González, L.; Jiménez, D. Finite Element Assessment of a Hybrid Proposal for Hip Stem, from a Standardized Base and Different Activities. Appl. Sci. 2022, 12, 7963. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Meshing User’s Guide; ANSYS: Canonsburg, PA, USA, 2013. [Google Scholar]
- Soliman, M.M.; Chowdhury, M.E.H.; Islam, M.T.; Musharavati, F.; Mahmud, S.; Hafizh, M.; Ayari, M.A.; Khandakar, A.; Alam, M.K.; Nezhad, E.Z. Design and Performance Evaluation of a Novel Spiral Head-Stem Trunnion for Hip Implants Using Finite Element Analysis. Materials 2023, 16, 1466. [Google Scholar] [CrossRef]
- ANSYS. The Fundamentals of FEA Meshing for Structural Analysis; ANSYS: Canonsburg, PA, USA, 2021; Volume 2022. [Google Scholar]
- Wassef, A.J.; Schmalzried, T.P. Femoral taperosis: An accident waiting to happen? Bone Joint J. 2013, 11 (Suppl. A), 3–6. [Google Scholar] [CrossRef]
Elastic Modulus (GPa) | Yield Strength (MPa) | Ultimate Strength (MPa) | Density (kg/m3) | |
---|---|---|---|---|
Ti6Al4V | 110 | 910 | 1000 | 4400 |
Co-Cr | 220 | 840 | 1280 | 8500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceddia, M.; Solarino, G.; Cassano, G.D.; Trentadue, B. Finite Element Study on Stability in the Femoral Neck and Head Connection to Varying Geometric Parameters with the Relates Implications on the Effect of Wear. J. Compos. Sci. 2023, 7, 387. https://doi.org/10.3390/jcs7090387
Ceddia M, Solarino G, Cassano GD, Trentadue B. Finite Element Study on Stability in the Femoral Neck and Head Connection to Varying Geometric Parameters with the Relates Implications on the Effect of Wear. Journal of Composites Science. 2023; 7(9):387. https://doi.org/10.3390/jcs7090387
Chicago/Turabian StyleCeddia, Mario, Giuseppe Solarino, Giuseppe Danilo Cassano, and Bartolomeo Trentadue. 2023. "Finite Element Study on Stability in the Femoral Neck and Head Connection to Varying Geometric Parameters with the Relates Implications on the Effect of Wear" Journal of Composites Science 7, no. 9: 387. https://doi.org/10.3390/jcs7090387
APA StyleCeddia, M., Solarino, G., Cassano, G. D., & Trentadue, B. (2023). Finite Element Study on Stability in the Femoral Neck and Head Connection to Varying Geometric Parameters with the Relates Implications on the Effect of Wear. Journal of Composites Science, 7(9), 387. https://doi.org/10.3390/jcs7090387