Removal of Ibuprofen from Aqueous Solutions by Using Graphene Oxide@MgO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of GO@MgO
2.3. Analytical Determinations
2.4. Adsorption Experiments
2.4.1. Equilibrium Experiments
2.4.2. Kinetics Experiments
2.5. Thermodynamics
2.6. Characterization Techniques
2.7. Regeneration Study
2.8. Stability Study
3. Results and Discussion
3.1. Characterization of GO@MgO
3.2. Effect of Initial pH Solution
3.3. Effect of Adsorbent’s Dosage
3.4. Effect of Contact Time
3.5. Adsorption Kinetics
3.6. Adsorption Isotherms
3.7. Thermodynamics Results
3.8. Regeneration Study Results
3.9. Stability
3.10. Comparison with Other MgO/Graphene Oxide Nanocomposite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thabede, P.M.; Mtunzi, F.; Nyamukamba, P. Sorption Behaviour of Ibuprofen Using Activated Carbon Derived from Rose Geranium (Pelargonium graveolens L.) Leaves. Appl. Sci. 2023, 13, 5133. [Google Scholar] [CrossRef]
- Akash, S.; Sivaprakash, B.; Rajamohan, N.; Govarthanan, M.; Elakiya, B.T. Remediation of Pharmaceutical Pollutants Using Graphene-Based Materials—A Review on Operating Conditions, Mechanism and Toxicology. Chemosphere 2022, 306, 135520. [Google Scholar] [CrossRef]
- Osman, A.I.; Ayati, A.; Farghali, M.; Krivoshapkin, P.; Tanhaei, B.; Karimi-Maleh, H.; Krivoshapkina, E.; Taheri, P.; Tracey, C.; Al-Fatesh, A.; et al. Advanced Adsorbents for Ibuprofen Removal from Aquatic Environments: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2024; Volume 22, ISBN 0123456789. [Google Scholar]
- Heidarizad, M.; Şengör, S.S. Synthesis of Graphene Oxide/Magnesium Oxide Nanocomposites with High-Rate Adsorption of Methylene Blue. J. Mol. Liq. 2016, 224, 607–617. [Google Scholar] [CrossRef]
- Davarnejad, R.; Soofi, B.; Farghadani, F.; Behfar, R. Ibuprofen Removal from a Medicinal Effluent: A Review on the Various Techniques for Medicinal Effluents Treatment. Environ. Technol. Innov. 2018, 11, 308–320. [Google Scholar] [CrossRef]
- Guettaia, D.; Zazoua, H.; Ramdani, M.R.; Bacharı, K.; Coville, N.J.; Boudjemaa, A. Removal of Ibuprofen Using a SiO2@xTiO2 Photocatalyst under UV Irradiation. React. Kinet. Mech. Catal. 2023, 136, 1085–1106. [Google Scholar] [CrossRef]
- Hussain, S.; Aneggi, E.; Briguglio, S.; Mattiussi, M.; Gelao, V.; Cabras, I.; Zorzenon, L.; Trovarelli, A.; Goi, D. Enhanced Ibuprofen Removal by Heterogeneous-Fenton Process over Cu/ZrO2 and Fe/ZrO2 Catalysts. J. Environ. Chem. Eng. 2020, 8, 103586. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Chen, Z.; Shen, B.; Wei, J.; Zeng, P.; Wen, X. Catalytic Ozonation for Metoprolol and Ibuprofen Removal over Different MnO2 Nanocrystals: Efficiency, Transformation and Mechanism. Sci. Total Environ. 2021, 785, 147328. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Gómez, M.; Murcia, M.D.; León, G.; Miguel, B.; Gago, I.; Martínez, P.M. Ibuprofen Removal by Graphene Oxide and Reduced Graphene Oxide Coated Polysulfone Nanofiltration Membranes. Membranes 2022, 12, 562. [Google Scholar] [CrossRef]
- Cornejo, J.; González-Pérez, D.M.; Pérez, J.I.; Gómez, M.A. Ibuprofen Removal by a Microfiltration Membrane Bioreactor during the Startup Phase. J. Environ. Sci. Health Part A 2020, 55, 374–384. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative Adsorption Performance of Ibuprofen and Tetracycline from Aqueous Solution by Carbonaceous Materials. Chem. Eng. J. 2016, 283, 936–947. [Google Scholar] [CrossRef]
- Reverberi, A.P.; Maga, L.; Cerrato, C.; Fabiano, B. Membrane Processes for Water Recovery and Decontamination. Curr. Opin. Chem. Eng. 2014, 6, 75–82. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Rashed, A.O.; Huynh, C.; Merenda, A.; Qin, S.; Maghe, M.; Kong, L.; Kondo, T.; Dumée, L.F.; Razal, J.M. Carbon Nanofibre Microfiltration Membranes Tailored by Oxygen Plasma for Electrocatalytic Wastewater Treatment in Cross-Flow Reactors. J. Membr. Sci. 2023, 673, 121475. [Google Scholar] [CrossRef]
- Rashed, A.O.; Huynh, C.; Merenda, A.; Qin, S.; Usman, K.A.S.; Sadek, A.; Kong, L.; Kondo, T.; Dumée, L.F.; Razal, J.M. Schottky-like Photo/Electro-Catalytic Carbon Nanotube Composite Ultrafiltration Membrane Reactors. Carbon 2023, 204, 238–253. [Google Scholar] [CrossRef]
- Rabbat, C.; Pinna, A.; Andres, Y.; Villot, A.; Awad, S. Adsorption of Ibuprofen from Aqueous Solution onto a Raw and Steam-Activated Biochar Derived from Recycled Textiles Insulation Panels at End-of-Life: Kinetic, Isotherm and Fixed-Bed Experiments. J. Water Process Eng. 2023, 53, 103830. [Google Scholar] [CrossRef]
- Guedidi, H.; Reinert, L.; Soneda, Y.; Bellakhal, N.; Duclaux, L. Adsorption of Ibuprofen from Aqueous Solution on Chemically Surface-Modified Activated Carbon Cloths. Arab. J. Chem. 2017, 10, S3584–S3594. [Google Scholar] [CrossRef]
- Mestre, A.S.; Pires, J.; Nogueira, J.M.F.; Carvalho, A.P. Activated Carbons for the Adsorption of Ibuprofen. Carbon 2007, 45, 1979–1988. [Google Scholar] [CrossRef]
- Ndagijimana, P.; Liu, X.; Xu, Q.; Li, Z.; Pan, B.; Wang, Y. Simultaneous Removal of Ibuprofen and Bisphenol A from Aqueous Solution by an Enhanced Cross-Linked Activated Carbon and Reduced Graphene Oxide Composite. Sep. Purif. Technol. 2022, 299, 121681. [Google Scholar] [CrossRef]
- Alkhathami, N.D.; Alamrani, N.A.; Hameed, A.; Al-Qahtani, S.D.; Shah, R.; El-Metwaly, N.M. Adsorption of Pharmaceutical Ibuprofen over Functionalized Zirconium Metal-Organic Frameworks; Batch Experiment and Mechanism of Interaction. Polyhedron 2023, 235, 116349. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Le, H.T.N.; Do, T.S.; Pham, V.T.; Lam Tran, D.; Ho, V.T.T.; Tran, T.V.; Nguyen, D.C.; Nguyen, T.D.; Bach, L.G.; et al. Metal-Organic Framework MIL-53 (Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. J. Chem. 2019, 2019, 5602957. [Google Scholar] [CrossRef]
- Ghemit, R.; Makhloufi, A.; Djebri, N.; Flilissa, A.; Zerroual, L.; Boutahala, M. Adsorptive Removal of Diclofenac and Ibuprofen from Aqueous Solution by Organobentonites: Study in Single and Binary Systems. Groundw. Sustain. Dev. 2019, 8, 520–529. [Google Scholar] [CrossRef]
- Malvar, J.L.; Martín, J.; del Mar Orta, M.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Simultaneous and Individual Adsorption of Ibuprofen Metabolites by a Modified Montmorillonite. Appl. Clay Sci. 2020, 189, 105529. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpää, M. Recent Advances in Using of Chitosan-Based Adsorbents for Removal of Pharmaceutical Contaminants: A Review. J. Clean. Prod. 2021, 291, 125880. [Google Scholar] [CrossRef]
- Yu, M.; Li, H.; Xie, J.; Xu, Y.; Lu, X. A Descriptive and Comparative Analysis on the Adsorption of PPCPs by Molecularly Imprinted Polymers. Talanta 2022, 236, 122875. [Google Scholar] [CrossRef]
- Vishnu Priyan, V.; Narayanasamy, S. Effective Removal of Pharmaceutical Contaminants Ibuprofen and Sulfamethoxazole from Water by Corn Starch Nanoparticles: An Ecotoxicological Assessment. Environ. Toxicol. Pharmacol. 2022, 94, 103930. [Google Scholar] [CrossRef]
- Asghar, F.; Shakoor, B.; Fatima, S.; Munir, S.; Razzaq, H.; Naheed, S.; Butler, I.S. Fabrication and Prospective Applications of Graphene Oxide-Modified Nanocomposites for Wastewater Remediation. RSC Adv. 2022, 12, 11750–11768. [Google Scholar] [CrossRef]
- Ghulam, A.N.; Dos Santos, O.A.L.; Hazeem, L.; Backx, B.P.; Bououdina, M.; Bellucci, S. Graphene Oxide (GO) Materials—Applications and Toxicity on Living Organisms and Environment. J. Funct. Biomater. 2022, 13, 77. [Google Scholar] [CrossRef]
- Fei, L.; Chen, C.; Shen, L.; Zhang, Y.; Wang, B.; Xu, J.; Li, B.; Raza, S.; Lin, H. Graphene Oxide Assisted Assembly of Superhydrophilic MOF-Based Membrane with 2D/3D Hybrid Nanochannels for Enhanced Water Purification. Chem. Eng. J. 2023, 460, 141694. [Google Scholar] [CrossRef]
- Almeida-Naranjo, C.E.; Guerrero, V.H.; Villamar-Ayala, C.A. Emerging Contaminants and Their Removal from Aqueous Media Using Conventional/Non-Conventional Adsorbents: A Glance at the Relationship between Materials, Processes, and Technologies. Water 2023, 15, 1626. [Google Scholar] [CrossRef]
- Khalil, A.M.E.; Memon, F.A.; Tabish, T.A.; Salmon, D.; Zhang, S.; Butler, D. Nanostructured Porous Graphene for Efficient Removal of Emerging Contaminants (Pharmaceuticals) from Water. Chem. Eng. J. 2020, 398, 125440. [Google Scholar] [CrossRef]
- Anegbe, B.; Ifijen, I.H.; Maliki, M.; Uwidia, I.E.; Aigbodion, A.I. Graphene Oxide Synthesis and Applications in Emerging Contaminant Removal: A Comprehensive Review. Environ. Sci. Eur. 2024, 36, 15. [Google Scholar] [CrossRef]
- Jiříčková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef]
- Majumder, P.; Gangopadhyay, R. Evolution of Graphene Oxide (GO)-Based Nanohybrid Materials with Diverse Compositions: An Overview; Royal Society of Chemistry: Cambridge, MA, USA, 2022; Volume 12, ISBN 6795812766. [Google Scholar]
- Guo, T.; Bulin, C. Facile Preparation of MgO/Graphene Oxide Nanocomposite for Efficient Removal of Aqueous Congo Red: Adsorption Performance and Interaction Mechanism. Res. Chem. Intermed. 2021, 47, 945–971. [Google Scholar] [CrossRef]
- Sahin, O.I.; Saygi-Yalcin, B.; Saloglu, D. Adsorption of Ibuprofen from Wastewater Using Activated Carbon and Graphene Oxide Embedded Chitosan–Pva: Equilibrium, Kinetics, and Thermodynamics and Optimization with Central Composite Design. Desalin. Water Treat. 2020, 179, 396–417. [Google Scholar] [CrossRef]
- Sivaselvam, S.; Premasudha, P.; Viswanathan, C.; Ponpandian, N. Enhanced Removal of Emerging Pharmaceutical Contaminant Ciprofloxacin and Pathogen Inactivation Using Morphologically Tuned MgO Nanostructures. J. Environ. Chem. Eng. 2020, 8, 104256. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Zouboulis, A.I. Graphene Oxide/Fe-Based Composite Pre-Polymerized Coagulants: Synthesis, Characterization, and Potential Application in Water Treatment. C—J. Carbon Res. 2020, 6, 44. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1957, 208, 1937. [Google Scholar] [CrossRef]
- Debnath, S.; Maity, A.; Pillay, K. Impact of Process Parameters on Removal of Congo Red by Graphene Oxide from Aqueous Solution. J. Environ. Chem. Eng. 2014, 2, 260–272. [Google Scholar] [CrossRef]
- Khayatian, G.; Jodan, M.; Hassanpoor, S.; Mohebbi, S. Determination of Trace Amounts of Cadmium, Copper and Nickel in Environmental Water and Food Samples Using GO/MgO Nanocomposite as a New Sorbent. J. Iran. Chem. Soc. 2016, 13, 831–839. [Google Scholar] [CrossRef]
- Guedidi, H.; Lakehal, I.; Reinert, L.; Lévêque, J.M.; Bellakhal, N.; Duclaux, L. Removal of Ionic Liquids and Ibuprofen by Adsorption on a Microporous Activated Carbon: Kinetics, Isotherms, and Pore Sites. Arab. J. Chem. 2020, 13, 258–270. [Google Scholar] [CrossRef]
- Ao, D.; AP, L.; AM, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Jeppu, G.P.; Clement, T.P. A Modified Langmuir-Freundlich Isotherm Model for Simulating PH-Dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129–130, 46–53. [Google Scholar] [CrossRef]
- Langmuir, I. The Evaporation, Condensation and Reflection of Molecules and the Mechanism of Adsorption. Phys. Rev. 1916, 8, 149–176. [Google Scholar] [CrossRef]
- Freundlich, H. Über Die Adsorption in Lösungen. Z. Für Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Christodoulou, E.; Bikiaris, D.N. Basic Dye Removal with Sorption onto Low-Cost Natural Textile Fibers. Processes 2018, 6, 166. [Google Scholar] [CrossRef]
- Mullick, A.; Neogi, S. Acoustic Cavitation Induced Synthesis of Zirconium Impregnated Activated Carbon for Effective Fluoride Scavenging from Water by Adsorption. Ultrason. Sonochem. 2018, 45, 65–77. [Google Scholar] [CrossRef]
- Tan, T.L.; Krusnamurthy, P.A.; Nakajima, H.; Rashid, S.A. Adsorptive, Kinetics and Regeneration Studies of Fluoride Removal from Water Using Zirconium-Based Metal Organic Frameworks. RSC Adv. 2020, 10, 18740–18752. [Google Scholar] [CrossRef]
- Akinhanmi, T.F.; Ofudje, E.A.; Adeogun, A.I.; Aina, P.; Joseph, I.M. Orange Peel as Low-Cost Adsorbent in the Elimination of Cd (II) Ion: Kinetics, Isotherm, Thermodynamic and Optimization Evaluations. Bioresour. Bioprocess. 2020, 7, 34. [Google Scholar] [CrossRef]
- Fathy, R.M.; Mahfouz, A.Y. Eco-Friendly Graphene Oxide-Based Magnesium Oxide Nanocomposite Synthesis Using Fungal Fermented by-Products and Gamma Rays for Outstanding Antimicrobial, Antioxidant, and Anticancer Activities. J. Nanostructure Chem. 2021, 11, 301–321. [Google Scholar] [CrossRef]
- Fei, L.; Shen, L.; Chen, C.; Xu, J.; Wang, B.; Li, B.; Lin, H. Assembling 99% MOFs into Bioinspired Rigid-Flexible Coupled Membrane with Significant Permeability: The Impacts of Defects. Small 2024, 20, 2306528. [Google Scholar] [CrossRef]
- Baghbaderani, M.Z.; Abazari, S.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Sharif, S.; Najafinezhad, A.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. Dual Synergistic Effects of MgO-GO Fillers on Degradation Behavior, Biocompatibility and Antibacterial Activities of Chitosan Coated Mg Alloy. Coatings 2022, 12, 63. [Google Scholar] [CrossRef]
- Yamin, M.; Ghouri, Z.K.; Rohman, N.; Syed, J.A.; Skelton, A.; Ahmed, K. Unravelling pH/pKa influence on pH-responsive drug carriers: Insights from ibuprofen-silica interactions and comparative analysis with carbon nanotubes, sulfasalazine, and alendronate. J. Mol. Graph. Model. 2024, 128, 108720. [Google Scholar] [CrossRef]
- Tai, M.H.; Saha, B.; Streat, M. Determination of Point Zero Charge (PZC) of Homemade Charcoals of Shorea Robusta (Sakhuwa) and Pinus Roxburghii (Salla). Int. J. Eng. Res. Technol. 2020, 9, 153–155. [Google Scholar]
- Gorzin, F.; Bahri Rasht Abadi, M.M. Adsorption of Cr (VI) from Aqueous Solution by Adsorbent Prepared from Paper Mill Sludge: Kinetics and Thermodynamics Studies. Adsorpt. Sci. Technol. 2018, 36, 149–169. [Google Scholar] [CrossRef]
- Khamseh, A.A.G.; Ghorbanian, S.A.; Amini, Y.; Shadman, M.M. Investigation of Kinetic, Isotherm and Adsorption Efficacy of Thorium by Orange Peel Immobilized on Calcium Alginate. Sci. Rep. 2023, 13, 8393. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Ebelegi, A.N.; Ayawei, N.; Wankasi, D. Interpretation of Adsorption Thermodynamics and Kinetics. Open J. Phys. Chem. 2020, 10, 166–182. [Google Scholar] [CrossRef]
- Rajabi, M.; Keihankhadiv, S.; Suhas; Tyagi, I.; Karri, R.R.; Chaudhary, M.; Mubarak, N.M.; Chaudhary, S.; Kumar, P.; Singh, P. Comparison and Interpretation of Isotherm Models for the Adsorption of Dyes, Proteins, Antibiotics, Pesticides and Heavy Metal Ions on Different Nanomaterials and Non-Nano Materials—A Comprehensive Review. J. Nanostructure Chem. 2023, 13, 43–65. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Graphene Oxide and Its Application as an Adsorbent for Wastewater Treatment. J. Chem. Technol. Biotechnol. 2014, 89, 196–205. [Google Scholar] [CrossRef]
- Chen, W.; Luan, J.; Yu, X.; Wang, X.; Ke, X. Preparation of Core-Shell Structured Polystyrene @ Graphene Oxide Composite Microspheres with High Adsorption Capacity and Its Removal of Dye Contaminants. Environ. Technol. 2021, 42, 3840–3851. [Google Scholar] [CrossRef]
- Gkika, D.A.; Mitropoulos, A.C.; Kyzas, G.Z. Why Reuse Spent Adsorbents? The Latest Challenges and Limitations. Sci. Total Environ. 2022, 822, 153612. [Google Scholar] [CrossRef]
- Renu; Sithole, T. A Review on Regeneration of Adsorbent and Recovery of Metals: Adsorbent Disposal and Regeneration Mechanism. S. Afr. J. Chem. Eng. 2024, 50, 39–50. [Google Scholar] [CrossRef]
- Nagpal, M.; Kakkar, R. Facile Synthesis of Mesoporous Magnesium Oxide–Graphene Oxide Composite for Efficient and Highly Selective Adsorption of Hazardous Anionic Dyes. Res. Chem. Intermed. 2020, 46, 2497–2521. [Google Scholar] [CrossRef]
- Xu, J.; Xu, D.; Zhu, B.; Cheng, B.; Jiang, C. Adsorptive Removal of an Anionic Dye Congo Red by Flower-like Hierarchical Magnesium Oxide (MgO)-Graphene Oxide Composite Microspheres. Appl. Surf. Sci. 2018, 435, 1136–1142. [Google Scholar] [CrossRef]
- Mohan, S.; Kumar, V.; Singh, D.K.; Hasan, S.H. Effective Removal of Lead Ions Using Graphene Oxide-MgO Nanohybrid from Aqueous Solution: Isotherm, Kinetic and Thermodynamic Modeling of Adsorption. J. Environ. Chem. Eng. 2017, 5, 2259–2273. [Google Scholar] [CrossRef]
% w/w | GO@MgO |
---|---|
Au 1 | 39.85 |
C | 34.44 |
O | 13.61 |
Mg | 6.40 |
Re | 2.60 |
Zn | 1.04 |
Cu | 2.06 |
Pseudo-First-Order Model (PFO) | Pseudo-Second-Order Model (PSO) | |||||
---|---|---|---|---|---|---|
Qe.exp (mg/g) | k1 (1/min) | Qe.cal (mg/g) | R2 | k2 (L/mg∙min) | Qe.cal (mg/g) | R2 |
165.3 | 0.2251 | 156.9 | 0.9963 | 0.004551 | 160.5 | 0.9998 |
Langmuir Isotherm Model | ||
Qm (mg/g) | KL (L/mg) | R2 |
1075 | 0.0052 | 0.9843 |
Freundlich isotherm model | ||
1/n | KF (mg/g)(L/mg)1/n | R2 |
0.7246 | 12.9 | 0.9913 |
Composite | Pollutant | pH | R% | Qm (mg/g) | Ref. |
---|---|---|---|---|---|
MgO/GO | Congo red (CR) | 2.0 | 97.8 | 684 | [35] |
Flower-like MgO-GO microspheres | Congo red (CR) | 6.0–7.0 | n/a* | 237 | [66] |
MGC | Indigo carmine (IC) | 4.0 | 99.9 | 252 | [65] |
MGC | Orange G (OG) | 4.0 | 86.0 | 24 | [65] |
GO/MgO NCs | Methylene Blue (MB) | 11.0 | 99.9 | 833 | [25] |
GOMO | Lead Pb(II) | 6.5 | n/a* | 190 | [67] |
MgO NPs | Diclofenac (DCF) | 7.0 | 85.0 | 66 | [64] |
GO@MgO | Ibuprofen (IBU) | 3.0 | 96.3 | 1075 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malouchi, N.; Tolkou, A.K.; Maroulas, K.N.; Katsoyiannis, I.A.; Kyzas, G.Z. Removal of Ibuprofen from Aqueous Solutions by Using Graphene Oxide@MgO. J. Compos. Sci. 2024, 8, 434. https://doi.org/10.3390/jcs8100434
Malouchi N, Tolkou AK, Maroulas KN, Katsoyiannis IA, Kyzas GZ. Removal of Ibuprofen from Aqueous Solutions by Using Graphene Oxide@MgO. Journal of Composites Science. 2024; 8(10):434. https://doi.org/10.3390/jcs8100434
Chicago/Turabian StyleMalouchi, Natalia, Athanasia K. Tolkou, Konstantinos N. Maroulas, Ioannis A. Katsoyiannis, and George Z. Kyzas. 2024. "Removal of Ibuprofen from Aqueous Solutions by Using Graphene Oxide@MgO" Journal of Composites Science 8, no. 10: 434. https://doi.org/10.3390/jcs8100434
APA StyleMalouchi, N., Tolkou, A. K., Maroulas, K. N., Katsoyiannis, I. A., & Kyzas, G. Z. (2024). Removal of Ibuprofen from Aqueous Solutions by Using Graphene Oxide@MgO. Journal of Composites Science, 8(10), 434. https://doi.org/10.3390/jcs8100434