Previous Issue
Volume 8, September
 
 

J. Compos. Sci., Volume 8, Issue 10 (October 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 5002 KiB  
Article
Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks
by Yixuan Sun, Imad Hanhan, Michael D. Sangid and Guang Lin
J. Compos. Sci. 2024, 8(10), 387; https://doi.org/10.3390/jcs8100387 - 25 Sep 2024
Viewed by 219
Abstract
Evaluating the mechanical response of fiber-reinforced composites can be extremely time-consuming and expensive. Machine learning (ML) techniques offer a means for faster predictions via models trained on existing input–output pairs and have exhibited success in composite research. This paper explores a fully convolutional [...] Read more.
Evaluating the mechanical response of fiber-reinforced composites can be extremely time-consuming and expensive. Machine learning (ML) techniques offer a means for faster predictions via models trained on existing input–output pairs and have exhibited success in composite research. This paper explores a fully convolutional neural network modified from StressNet, which was originally used for linear elastic materials, and extended here for a non-linear finite element (FE) simulation to predict the stress field in 2D slices of segmented tomography images of a fiber-reinforced polymer specimen. The network was trained and evaluated on data generated from the FE simulations of the exact microstructure. The testing results show that the trained network accurately captures the characteristics of the stress distribution, especially on fibers, solely from the segmented microstructure images. The trained model can make predictions within seconds in a single forward pass on an ordinary laptop, given the input microstructure, compared to 92.5 h to run the full FE simulation on a high-performance computing cluster. These results show promise in using ML techniques to conduct fast structural analysis for fiber-reinforced composites and suggest a corollary that the trained model can be used to identify the location of potential damage sites in fiber-reinforced polymers. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

33 pages, 7217 KiB  
Review
Transforming Nanomaterial Synthesis through Advanced Microfluidic Approaches: A Review on Accessing Unrestricted Possibilities
by Sanjib Roy, Ramesh Kumar, Argha Acooli, Snehagni Roy, Abhrajit Chatterjee, Sujoy Chattaraj, Jayato Nayak, Byong-Hun Jeon, Aradhana Basu, Shirsendu Banerjee, Sankha Chakrabortty and Suraj K. Tripathy
J. Compos. Sci. 2024, 8(10), 386; https://doi.org/10.3390/jcs8100386 - 25 Sep 2024
Viewed by 243
Abstract
The inception of microfluidic devices marks a confluence of diverse scientific domains, including physics, biology, chemistry, and fluid mechanics. These multidisciplinary roots have catalyzed the evolution of microfluidic devices, which serve as versatile platforms for various chemical and biological processes. Notably, microfluidic devices [...] Read more.
The inception of microfluidic devices marks a confluence of diverse scientific domains, including physics, biology, chemistry, and fluid mechanics. These multidisciplinary roots have catalyzed the evolution of microfluidic devices, which serve as versatile platforms for various chemical and biological processes. Notably, microfluidic devices have garnered attention as efficient reactors, offering distinct benefits such as minimized spatial requirements for reactions, reduced equipment costs, and accelerated residence times. These advantages, among others, have ignited a compelling interest in harnessing microfluidic technology for the conception, refinement, and production of various nanomaterials and nanocomposites, pivotal within both industrial and medicinal sectors. This comprehensive exposition delves into multifaceted aspects of nanomaterial synthesis, underscoring the transformative role of microfluidic methodologies as a departure from conventional techniques. The discourse navigates through intricate considerations surrounding the preparation of nanomaterials, elucidating how the microfluidic paradigm has emerged as a promising alternative. This paper serves as an illuminating exploration of the juncture between microfluidic innovation and nanomaterial synthesis. It traverses the transformative potential of microfluidics in revolutionizing traditional approaches, heralding a new era of precision engineering for advanced materials with applications spanning industrial to medicinal domains. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

13 pages, 7982 KiB  
Article
Thermoplastic-Based Ballistic Helmets: Processing, Ballistic Resistance and Damage Characterization
by Rafael R. Dias, Natalin M. Meliande, Hector G. Kotik, César G. Camerini and Iaci M. Pereira
J. Compos. Sci. 2024, 8(10), 385; https://doi.org/10.3390/jcs8100385 - 24 Sep 2024
Viewed by 384
Abstract
Ballistic helmets are individual pieces of armor equipment designed to protect a soldier’s head from projectiles and fragments. Although very common, these helmets are responsible for several casualties due to their significant back face deformation and low ballistic resistance to projectiles. Therefore, to [...] Read more.
Ballistic helmets are individual pieces of armor equipment designed to protect a soldier’s head from projectiles and fragments. Although very common, these helmets are responsible for several casualties due to their significant back face deformation and low ballistic resistance to projectiles. Therefore, to enhance helmet performance, studies have focused on the development of new materials and new ballistic protection solutions. The purpose of this study was to develop and evaluate a new ballistic solution using thermoplastic-based matrices. The first matrix was based on high-density polyethylene (HDPE). The second matrix was based on HDPE modified with exfoliated montmorillonite (MMT). The main manufacturing processes of a thermoplastic-based ballistic helmet are presented, along with its ballistic performance, according to the National Institute of Justice (NIJ) standard 0106.01 and an investigation of its failure mechanisms via a non-destructive technique. All the helmets resulted in level III-A ballistic protection. The postimpact helmets were scanned to evaluate the back face deformation dimensions, which revealed that the global cone deformation was deeper in the HDPE than in the HDPE/MMT helmet. The failure analysis revealed an overall larger deformation area in the HDPE and HDPE/MMT helmet delamination zones in the regions with a large radius of curvature than in the zones with the lowest radius, which is in accordance with previous simulations reported in the literature. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Graphical abstract

16 pages, 3882 KiB  
Article
Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins
by Jakub Czakaj, Daria Pakuła, Julia Głowacka, Bogna Sztorch and Robert E. Przekop
J. Compos. Sci. 2024, 8(10), 384; https://doi.org/10.3390/jcs8100384 - 24 Sep 2024
Viewed by 450
Abstract
Polyoxymethylene (POM), polypropylene (PP), and poly(methyl methacrylate) (PMMA) have been blended with adhesive-grade ethylene vinyl acetate (EVA), propylene elastomer (VMX), isobutylene–isoprene rubber (IIR) and an acrylic block copolymer (MMA-nBA-MMA). The blends were prepared using a two-roll mill and injection molding. The mechanical properties [...] Read more.
Polyoxymethylene (POM), polypropylene (PP), and poly(methyl methacrylate) (PMMA) have been blended with adhesive-grade ethylene vinyl acetate (EVA), propylene elastomer (VMX), isobutylene–isoprene rubber (IIR) and an acrylic block copolymer (MMA-nBA-MMA). The blends were prepared using a two-roll mill and injection molding. The mechanical properties of the blends, such as tensile strength, tensile modulus, elongation at maximum load, and impact resistance, were investigated. The water contact angle, melt flow rate (MFR), and differential scanning calorimetry were ascertained to evaluate the blends. The blend samples exhibited the following properties: all POM/EVA blends showed reduced crystallinity compared to neat POM; the 80% PMMA/20% MMA-nBA-MMA blend showed improved impact resistance by 243% compared to the neat PMMA. An antiplasticization effect was observed for POM/EVA 1% blends and PMMA/EVA 1% blends, with MFR reduced by 1% and 3%, respectively. The MFR of the PP/IIR 1% blend increased by 5%, then decreased below the MFR near the polymer for the remaining IIR concentrations. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

10 pages, 2602 KiB  
Article
Endothermic–Exothermic Hybrid Foaming of Recycled PET Blends
by Veronika Anna Szabó, Gusztáv Fekete and Gábor Dogossy
J. Compos. Sci. 2024, 8(10), 383; https://doi.org/10.3390/jcs8100383 - 24 Sep 2024
Viewed by 288
Abstract
Over the past decades, the use of polyethylene terephthalate (PET) has seen significant growth, particularly in the packaging industry. However, its long decomposition time poses serious environmental challenges. The aim of this research was to develop a process for the foaming of large [...] Read more.
Over the past decades, the use of polyethylene terephthalate (PET) has seen significant growth, particularly in the packaging industry. However, its long decomposition time poses serious environmental challenges. The aim of this research was to develop a process for the foaming of large quantities of recycled PET (rPET) using endothermic and exothermic foaming agents. Various formulations with different ratios of endothermic and exothermic foaming agents were prepared, as well as their mixtures. The study found that the endothermic–exothermic hybrid foaming process resulted in a finer cell-size distribution and enhanced mechanical properties, making the foams highly suitable for widespread applications. The results support the potential use of exothermic foaming agents as nucleating agents in a hybrid foaming system. In particular, the ratio of 3% endothermic and 1% exothermic foaming agents proved optimal in terms of achieving a balance between porosity and mechanical strength, thereby enabling broad industrial applicability. Full article
Show Figures

Figure 1

16 pages, 12203 KiB  
Article
Elaboration and Experimental Characterizations of Copper-Filled Polyamide Micro-Composites for Tribological Applications
by Mabrouka Akrout, Basma Ben Difallah, Mohamed Kharrat, Maher Dammak, António B. Pereira, Filipe J. Oliveira and Isabel Duarte
J. Compos. Sci. 2024, 8(10), 382; https://doi.org/10.3390/jcs8100382 - 24 Sep 2024
Viewed by 338
Abstract
Polyamide 66 (PA66) has been used for dynamic bearing applications due to its good wear and abrasion resistance, hardness, and rigidity. PA66/copper micro-composites were studied with respect to micro-mechanical, tribological, and structural properties. A mixing step followed by injection molding was used to [...] Read more.
Polyamide 66 (PA66) has been used for dynamic bearing applications due to its good wear and abrasion resistance, hardness, and rigidity. PA66/copper micro-composites were studied with respect to micro-mechanical, tribological, and structural properties. A mixing step followed by injection molding was used to develop the different composites: PA66+5 wt.% Cu, PA66+10 wt.% Cu, and PA66+15 wt.% Cu. The morphological aspects of the composites were studied using scanning electron microscopy and microtomography. Good dispersion and adhesion of Cu particles across the matrix were also seen. DSC analysis showed a slight improvement in the % of crystallinity and thermal characteristics of the composites, particularly with 5 wt.% filler. Additional crystallization enhanced the tensile performance of the composites, including the modulus, elongation at break, and tensile strength. Nanoindentation tests also indicated an increase in indentation hardness and elastic modulus as a function of the filler fraction. A pin-on-disk tribometer was used to study the friction and wear properties of neat PA66 and copper-filled PA66 composites. It was found that the composite with 5 weight percent copper had the best wear resistance. A progressive decrease in the friction coefficient was also seen. Copper filler increases hardness and may effectively reduce the temperature at contact interfaces during rotating cycles. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

Previous Issue
Back to TopTop