Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of BCs
2.3. Analysis of Biochar Properties
2.4. Adsorption Experiments of Benzene
2.5. Analytical Determination
2.6. RSM Design and Statistical Analysis
3. Results and Discussion
3.1. Characterization and Screening of Biochar
3.2. Isotherm Studies for Benzene Adsorption
3.3. Kinetic Studies for Benzene Adsorption
3.4. Possible Mechanisms for Benzene Adsorption onto KB-BC550
3.5. Effects of Biochar Dose, Concentration of Benzene, and Reaction Time on Adsorption Capacity from RSM Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, Y. Biomass-Derived Porous Carbons for Sorption of Volatile Organic Compounds (VOCs). Fuel 2023, 336, 126801. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H.; Peng, W.; Ge, S.; Sik Ok, Y. Adsorption Performance of Standard Biochar Materials against Volatile Organic Compounds in Air: A Case Study Using Benzene and Methyl Ethyl Ketone. Chem. Eng. J. 2020, 387, 123943. [Google Scholar] [CrossRef]
- Bahadar, H.; Mostafalou, S.; Abdollahi, M. Current Understandings and Perspectives on Non-Cancer Health Effects of Benzene: A Global Concern. Toxicol. Appl. Pharmacol. 2014, 276, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Gan, G.; Fan, S.; Li, X.; Zhang, Z.; Hao, Z. Adsorption and Membrane Separation for Removal and Recovery of Volatile Organic Compounds. J. Environ. Sci. 2023, 123, 96–115. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Verma, N. Removal of Volatile Organic Compounds by Cryogenic Condensation Followed by Adsorption. Chem. Eng. Sci. 2002, 57, 2679–2696. [Google Scholar] [CrossRef]
- Darracq, G.; Couvert, A.; Couriol, C.; Amrane, A.; Thomas, D.; Dumont, E.; Andres, Y.; Le Cloirec, P. Silicone Oil: An Effective Absorbent for the Removal of Hydrophobic Volatile Organic Compounds. J. Chem. Technol. Biotechnol. 2010, 85, 309–313. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic Oxidation of Volatile Organic Compounds (VOCs)—A Review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Y.; Shao, Q.; Long, C. Porous Polymeric Resin for Adsorbing Low Concentration of VOCs: Unveiling Adsorption Mechanism and Effect of VOCs’ Molecular Properties. Sep. Purif. Technol. 2019, 228, 115755. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto Engineered Carbon Materials: A Review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Guo, Y.; Zhu, T.; Xu, W. Adsorption and Desorption Characteristics of Hydrophobic Hierarchical Zeolites for the Removal of Volatile Organic Compounds. Chem. Eng. J. 2021, 411, 128558. [Google Scholar] [CrossRef]
- Li, B.; Mi, C. On the Adsorption of Volatile Organic Compounds on Hydroxyl-Functionalized Carbon Nanotubes in Aqueous Solution. Diam. Relat. Mater. 2022, 125, 108994. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.W.; Kim, J.E.; Kang, G.; Kim, H.J.; Choi, Y.K.; Lee, S.H. Adsorptive Behavior of Cu2+ and Benzene in Single and Binary Solutions onto Alginate Composite Hydrogel Beads Containing Pitch Pine-Based Biochar. Polymers 2022, 14, 3468. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Choi, Y.K.; Gurav, R.; Kim, H.J.; Yang, Y.H.; Bhatia, S.K. Evaluation for Simultaneous Removal of Anionic and Cationic Dyes onto Maple Leaf-Derived Biochar Using Response Surface Methodology. Appl. Sci. 2020, 10, 2982. [Google Scholar] [CrossRef]
- Chauhan, S.; Shafi, T.; Dubey, B.K.; Chowdhury, S. Biochar-Mediated Removal of Pharmaceutical Compounds from Aqueous Matrices via Adsorption. Waste Dispos. Sustain. Energy 2023, 5, 37–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, Y.; Cao, Y.; Han, L. Characteristics of Tetracycline Adsorption by Cow Manure Biochar Prepared at Different Pyrolysis Temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Zheng, Y.; Hu, X.; Creamer, A.E.; Annable, M.D.; Li, Y. Biochar for Volatile Organic Compound (VOC) Removal: Sorption Performance and Governing Mechanisms. Bioresour. Technol. 2017, 245, 606–614. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Siyal, A.A.; Zulfiqar, M.; Bilad, M.R.; Vagananthan, A.; Al-Fakih, A.; Ghaleb, A.A.S.; Almahbashi, N. Eucheuma Cottonii Seaweed-Based Biochar for Adsorption of Methylene Blue Dye. Sustainability 2020, 12, 10318. [Google Scholar] [CrossRef]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar Surface Functional Groups as Affected by Biomass Feedstock, Biochar Composition and Pyrolysis Temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Conversion of Crop, Weed and Tree Biomass into Biochar for Heavy Metal Removal and Wastewater Treatment. Biomass Convers. Biorefin. 2023, 13, 4901–4914. [Google Scholar] [CrossRef]
- Gurav, R.; Bhatia, S.K.; Choi, T.R.; Choi, Y.K.; Kim, H.J.; Song, H.S.; Lee, S.M.; Lee Park, S.; Lee, H.S.; Koh, J.; et al. Application of Macroalgal Biomass Derived Biochar and Bioelectrochemical System with Shewanella for the Adsorptive Removal and Biodegradation of Toxic Azo Dye. Chemosphere 2021, 264, 128539. [Google Scholar] [CrossRef]
- Regkouzas, P.; Diamadopoulos, E. Adsorption of Selected Organic Micro-Pollutants on Sewage Sludge Biochar. Chemosphere 2019, 224, 840–851. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment-Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Kwon, E.E.; Aminabhavi, T.M.; Dewil, R. Biochar in Water and Wastewater Treatment—A Sustainability Assessment. Chem. Eng. J. 2021, 420, 129946. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, K.; Fang, J.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Enhanced Adsorption Performance and Governing Mechanisms of Ball-Milled Biochar for the Removal of Volatile Organic Compounds (VOCs). Chem. Eng. J. 2020, 385, 123842. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, E.; Khapre, A.; Bordoloi, N.; Kumar, S. Sorption of Volatile Organic Compounds on Non-Activated Biochar. Bioresour. Technol. 2020, 297, 122469. [Google Scholar] [CrossRef] [PubMed]
- Anfar, Z.; Ait Ahsaine, H.; Zbair, M.; Amedlous, A.; Ait El Fakir, A.; Jada, A.; El Alem, N. Recent Trends on Numerical Investigations of Response Surface Methodology for Pollutants Adsorption onto Activated Carbon Materials: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1043–1084. [Google Scholar] [CrossRef]
- Baytar, O.; Şahin, Ö.; Horoz, S.; Kutluay, S. High-Performance Gas-Phase Adsorption of Benzene and Toluene on Activated Carbon: Response Surface Optimization, Reusability, Equilibrium, Kinetic, and Competitive Adsorption Studies. Environ. Sci. Pollut. Res. 2020, 27, 26191–26210. [Google Scholar] [CrossRef]
- Tripathi, P.; Srivastava, V.C.; Kumar, A. Optimization of an Azo Dye Batch Adsorption Parameters Using Box-Behnken Design. Desalination 2009, 249, 1273–1279. [Google Scholar] [CrossRef]
- Biswas, S.; Bal, M.; Behera, S.K.; Sen, T.K.; Meikap, B.C. Process Optimization Study of Zn2+ Adsorption on Biochar-Alginate Composite Adsorbent by Response Surface Methodology (RSM). Water 2019, 11, 325. [Google Scholar] [CrossRef]
- Dissanayake Herath, G.A.; Poh, L.S.; Ng, W.J. Statistical Optimization of Glyphosate Adsorption by Biochar and Activated Carbon with Response Surface Methodology. Chemosphere 2019, 227, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Song, H.J.; Gurav, R.; Bhatia, S.K.; Lee, E.B.; Kim, H.J.; Yang, Y.H.; Kan, E.; Kim, H.H.; Lee, S.H.; Choi, Y.K. Treatment of Microcystin-LR Cyanotoxin Contaminated Water Using Kentucky Bluegrass-Derived Biochar. J. Water Process Eng. 2021, 41, 102054. [Google Scholar] [CrossRef]
- Tan, X.F.; Zhu, S.S.; Wang, R.P.; Chen, Y.D.; Show, P.L.; Zhang, F.F.; Ho, S.H. Role of Biochar Surface Characteristics in the Adsorption of Aromatic Compounds: Pore Structure and Functional Groups. Chin. Chem. Lett. 2021, 32, 2939–2946. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The Structure Evolution of Biochar from Biomass Pyrolysis and Its Correlation with Gas Pollutant Adsorption Performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The Adsorption, Regeneration and Engineering Applications of Biochar for Removal Organic Pollutants: A Review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Kan, E. Effects of Pyrolysis Temperature on the Physicochemical Properties of Alfalfa-Derived Biochar for the Adsorption of Bisphenol A and Sulfamethoxazole in Water. Chemosphere 2019, 218, 741–748. [Google Scholar] [CrossRef]
- Kim, J.E.; Bhatia, S.K.; Song, H.J.; Yoo, E.; Jeon, H.J.; Yoon, J.Y.; Yang, Y.; Gurav, R.; Yang, Y.H.; Kim, H.J.; et al. Adsorptive Removal of Tetracycline from Aqueous Solution by Maple Leaf-Derived Biochar. Bioresour. Technol. 2020, 306, 123092. [Google Scholar] [CrossRef]
- Liu, L.; Liu, G.; Zhou, J.; Wang, J.; Jin, R.; Wang, A. Improved Bioreduction of Nitrobenzene by Black Carbon/Biochar Derived from Crop Residues. RSC Adv. 2016, 6, 84388–84396. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Wang, J. Pyrolytic Characteristics of Pine Wood in a Slowly Heating and Gas Sweeping Fixed-Bed Reactor. J. Anal. Appl. Pyrolysis 2009, 84, 179–184. [Google Scholar] [CrossRef]
- Özçimen, D.; Ersoy-Meriçboyu, A. Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials. Renew. Energy 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Sadegh, F.; Sadegh, N.; Wongniramaikul, W.; Apiratikul, R.; Choodum, A. Adsorption of Volatile Organic Compounds on Biochar: A Review. Process Saf. Environ. Prot. 2024, 182, 559–578. [Google Scholar] [CrossRef]
- Fan, X.; Wang, X.; Zhao, B.; Wan, J.; Tang, J.; Guo, X. Sorption Mechanisms of Diethyl Phthalate by Nutshell Biochar Derived at Different Pyrolysis Temperature. J. Environ. Chem. Eng. 2022, 10, 107328. [Google Scholar] [CrossRef]
- Jayawardhana, Y.; Mayakaduwa, S.S.; Kumarathilaka, P.; Gamage, S.; Vithanage, M. Municipal Solid Waste-Derived Biochar for the Removal of Benzene from Landfill Leachate. Environ. Geochem. Health 2019, 41, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Jayawardhana, Y.; Kumarathilaka, P.; Mayakaduwa, S.; Weerasundara, L.; Bandara, T.; Vithanage, M. Characteristics of Municipal Solid Waste Biochar: Its Potential to Be Used in Environmental Remediation. In Utilization and Management of Bioresources; Springer: Singapore, 2018; pp. 209–220. [Google Scholar] [CrossRef]
- Xiao, L.; Bi, E.; Du, B.; Zhao, X.; Xing, C. Surface Characterization of Maize-Straw-Derived Biochars and Their Sorption Performance for MTBE and Benzene. Environ. Earth Sci. 2014, 71, 5195–5205. [Google Scholar] [CrossRef]
- Li, D.; Su, R.; Ma, X.; Zeng, Z.; Li, L.; Wang, H. Porous Carbon for Oxygenated and Aromatic VOCs Adsorption by Molecular Simulation and Experimental Study: Effect Pore Structure and Functional Groups. Appl. Surf Sci. 2022, 605, 154708. [Google Scholar] [CrossRef]
- Huang, Y.; Chu, H.; Wang, D.; Hui, S. Performance and Mechanism of Benzene Adsorption on ZnCl2 One-Step Modified Corn Cob Biochar. Environ. Sci. Pollut. Res. 2024, 31, 15209–15222. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Pan, Z.; Zhang, X.; Miao, X.; Xiang, W.; Gao, B. Effect of Ball Milling with Hydrogen Peroxide or Ammonia Hydroxide on Sorption Performance of Volatile Organic Compounds by Biochar from Different Pyrolysis Temperatures. Chem. Eng. J. 2022, 450, 138027. [Google Scholar] [CrossRef]
- Zeng, S.; Choi, Y.K.; Kan, E. Iron-Activated Bermudagrass-Derived Biochar for Adsorption of Aqueous Sulfamethoxazole: Effects of Iron Impregnation Ratio on Biochar Properties, Adsorption, and Regeneration. Sci. Total Environ. 2021, 750, 141691. [Google Scholar] [CrossRef]
- Bakather, O.Y. Adsorption of Benzene on Impregnated Carbon Nanotubes. Ain Shams Eng. J. 2020, 11, 905–912. [Google Scholar] [CrossRef]
- da Costa Lopes, A.S.; de Carvalho, S.M.L.; do Socorro Barros Brasil, D.; de Alcântara Mendes, R.; Lima, M.O. Surface Modification of Commercial Activated Carbon (CAG) for the Adsorption of Benzene and Toluene. Am. J. Anal. Chem. 2015, 06, 528–538. [Google Scholar] [CrossRef]
- Jayawardhana, Y.; Keerthanan, S.; Lam, S.S.; Vithanage, M. Ethylbenzene and Toluene Interactions with Biochar from Municipal Solid Waste in Single and Dual Systems. Environ. Res. 2021, 197, 111102. [Google Scholar] [CrossRef] [PubMed]
- Raad, M.T.; Behnejad, H.; Jamal, M. El Equilibrium and Kinetic Studies for the Adsorption of Benzene and Toluene by Graphene Nanosheets: A Comparison with Carbon Nanotubes. Surf. Interface Anal. 2016, 48, 117–125. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of Feedstock Sources and Pyrolysis Temperature on the Properties of Biochar and Functionality as Adsorbents: A Meta-Analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of Biochar for the Adsorption of Organic Pollutants from Wastewater: Modification Strategies, Mechanisms and Challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Cui, Q.; Xu, J.; Wang, W.; Tan, L.; Cui, Y.; Wang, T.; Li, G.; She, D.; Zheng, J. Phosphorus Recovery by Core-Shell γ-Al2O3/Fe3O4 Biochar Composite from Aqueous Phosphate Solutions. Sci. Total Environ. 2020, 729, 138892. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.W.; Pecha, B.; Helms, G.; Scudiero, L.; Garcia-Perez, M. Chemical and Morphological Evaluation of Chars Produced from Primary Biomass Constituents: Cellulose, Xylan, and Lignin. Biomass Bioenergy 2017, 104, 17–35. [Google Scholar] [CrossRef]
- Luo, Y.; Li, R.; Sun, X.; Liu, X.; Li, D. The Roles of Phosphorus Species Formed in Activated Biochar from Rice Husk in the Treatment of Landfill Leachate. Bioresour. Technol. 2019, 288, 121533. [Google Scholar] [CrossRef]
- Tong, Y.; McNamara, P.J.; Mayer, B.K. Adsorption of Organic Micropollutants onto Biochar: A Review of Relevant Kinetics, Mechanisms and Equilibrium. Environ. Sci. 2019, 5, 821–838. [Google Scholar] [CrossRef]
- Wu, C.H.; Chang, S.H.; Lin, C.W. Improvement of Oxygen Release from Calcium Peroxide-Polyvinyl Alcohol Beads by Adding Low-Cost Bamboo Biochar and Its Application in Bioremediation. Clean 2015, 43, 287–295. [Google Scholar] [CrossRef]
Factor | Variables | Levels of Variables | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
X1 | Quantity of biochar (g) | 0.002 | 0.006 | 0.01 |
X2 | Concentration of benzene (mg/L; ppm) | 100 | 200 | 300 |
X3 | Reaction time (h) | 2 | 7 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, Y.; Weon, S.H.; Lee, G.-W.; Kim, H.J.; Lee, S.H.; Kim, Y.-H.; Kim, J.E.; Kang, G.; Park, S.; Choi, Y.-K. Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology). J. Compos. Sci. 2024, 8, 132. https://doi.org/10.3390/jcs8040132
Na Y, Weon SH, Lee G-W, Kim HJ, Lee SH, Kim Y-H, Kim JE, Kang G, Park S, Choi Y-K. Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology). Journal of Composites Science. 2024; 8(4):132. https://doi.org/10.3390/jcs8040132
Chicago/Turabian StyleNa, Yuhyeon, Seung Hyeon Weon, Gyu-Won Lee, Hyung Joo Kim, Sang Hyun Lee, Young-Hoo Kim, Ji Eun Kim, Gwangnam Kang, Saerom Park, and Yong-Keun Choi. 2024. "Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology)" Journal of Composites Science 8, no. 4: 132. https://doi.org/10.3390/jcs8040132
APA StyleNa, Y., Weon, S. H., Lee, G. -W., Kim, H. J., Lee, S. H., Kim, Y. -H., Kim, J. E., Kang, G., Park, S., & Choi, Y. -K. (2024). Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology). Journal of Composites Science, 8(4), 132. https://doi.org/10.3390/jcs8040132