Investigation of Thermomechanical and Dielectric Properties of PLA-CA 3D-Printed Biobased Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Procedures
2.3. Characterization Methods
2.3.1. Differential Scanning Calorimetry (DSC) Analysis
2.3.2. Dynamic Mechanical Analysis (DMA)
2.3.3. Broadband Dielectric Spectroscopy (BDS) Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- TechSci Research. Electronic Materials Market Size and Trends 2028; TechSci Research: Noida, India, 2023. [Google Scholar]
- Ankit; Saha, L.; Kumar, V.; Tiwari, J.; Sweta; Rawat, S.; Singh, J.; Bauddh, K. Electronic Waste and Their Leachates Impact on Human Health and Environment: Global Ecological Threat and Management. Environ. Technol. Innov. 2021, 24, 102049. [Google Scholar] [CrossRef]
- European Bioplastic Applications/Sectors; European Bioplastics e.V.: Berlin, Germany, 2023.
- Lecoublet, M.; Ragoubi, M.; Leblanc, N.; Koubaa, A. Dielectric and Viscoelastic Properties of 3D-Printed Biobased Materials. Ind. Crops Prod. 2024, 212, 118354. [Google Scholar] [CrossRef]
- Lecoublet, M.; Ragoubi, M.; Leblanc, N.; Koubaa, A. Dielectric and Rheological Performances of Cellulose Acetate, Polylactic Acid and Polyhydroxybutyrate-Co-Valerate Biobased Blends. Polymer 2023, 285, 126358. [Google Scholar] [CrossRef]
- Henning, C.; Schmid, A.; Hecht, S.; Ruckmar, C.; Harre, K.; Bauer, R. Usability of Bio-Based Polymers for PCB. In Proceedings of the 2019 42nd International Spring Seminar on Electronics Technology (ISSE), Wroclaw, Poland, 15–19 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Lecoublet, M.; Ragoubi, M.; Kenfack, L.B.; Leblanc, N.; Koubaa, A. How Do 3D Printing Parameters Affect the Dielectric and Mechanical Performance of Polylactic Acid–Cellulose Acetate Polymer Blends? J. Compos. Sci. 2023, 7, 492. [Google Scholar] [CrossRef]
- El Assimi, T.; Blažic, R.; Vidović, E.; Raihane, M.; El Meziane, A.; Baouab, M.H.V.; Khouloud, M.; Beniazza, R.; Kricheldorf, H.; Lahcini, M. Polylactide/Cellulose Acetate Biocomposites as Potential Coating Membranes for Controlled and Slow Nutrients Release from Water-Soluble Fertilizers. Prog. Org. Coat. 2021, 156, 106255. [Google Scholar] [CrossRef]
- Benabed, F.; Seghier, T. Dielectric Properties and Relaxation Behavior of High Density Polyethylene (HDPE). Appl. Mech. Mater. 2015, 799–800, 1319–1324. [Google Scholar] [CrossRef]
- Jacob, M.; Varughese, K.T.; Thomas, S. Dielectric Characteristics of Sisal–Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites. J. Mater. Sci. 2006, 41, 5538–5547. [Google Scholar] [CrossRef]
- Chaochanchaikul, K.; Pongmuksuwan, P. Influence of Ozonized Soybean Oil as a Biobased Plasticizer on the Toughness of Polylactic Acid. J. Polym. Environ. 2022, 30, 1095–1105. [Google Scholar] [CrossRef]
- Solazzo, M.; O’Brien, F.J.; Nicolosi, V.; Monaghan, M.G. The Rationale and Emergence of Electroconductive Biomaterial Scaffolds in Cardiac Tissue Engineering. APL Bioeng. 2019, 3, 041501. [Google Scholar] [CrossRef] [PubMed]
- Badia, J.D.; Reig-Rodrigo, P.; Teruel-Juanes, R.; Kittikorn, T.; Strömberg, E.; Ek, M.; Karlsson, S.; Ribes-Greus, A. Effect of Sisal and Hydrothermal Ageing on the Dielectric Behaviour of Polylactide/Sisal Biocomposites. Compos. Sci. Technol. 2017, 149, 1–10. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Dissanayake, M.A.K.L.; Albinsson, I.; Mellander, B.-E. Mobile Charge Carrier Concentration and Mobility of a Polymer Electrolyte Containing PEO and Pr4N+I− Using Electrical and Dielectric Measurements. Solid State Ion. 2011, 189, 63–68. [Google Scholar] [CrossRef]
- Zhang, S.; Arya, R.K.; Pandey, S.; Vardaxoglou, Y.; Whittow, W.; Mittra, R. 3D-Printed Planar Graded Index Lenses. IET Microw. Antennas Propag. 2016, 10, 1411–1419. [Google Scholar] [CrossRef]
- Kuzmanić, I.; Vujović, I.; Petković, M.; Šoda, J. Influence of 3D Printing Properties on Relative Dielectric Constant in PLA and ABS Materials. Prog. Addit. Manuf. 2023, 8, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Öteyaka, M.Ö.; Aybar, K.; Öteyaka, H.C. Effect of Infill Ratio on the Tensile and Flexural Properties of Unreinforced and Carbon Fiber-Reinforced Polylactic Acid Manufactured by Fused Deposition Modeling. J. Mater. Eng. Perform. 2021, 30, 5203–5215. [Google Scholar] [CrossRef]
- Colella, R.; Chietera, F.P.; Catarinucci, L. Analysis of FDM and DLP 3D-Printing Technologies to Prototype Electromagnetic Devices for RFID Applications. Sensors 2021, 21, 897. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Dabbak, S.; Illias, H.; Ang, B.; Abdul Latiff, N.; Makmud, M. Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies 2018, 11, 1448. [Google Scholar] [CrossRef]
- Noorunnisa Khanam, P.; Al-Maadeed, M.A.; Mrlik, M. Improved Flexible, Controlled Dielectric Constant Material from Recycled LDPE Polymer Composites. J. Mater. Sci. Mater. Electron. 2016, 27, 8848–8855. [Google Scholar] [CrossRef]
- Chen, J.-Q.; Wang, X.; Sun, W.-F.; Zhao, H. Improved Water-Tree Resistances of SEBS/PP Semi-Crystalline Composites under Crystallization Modifications. Molecules 2020, 25, 3669. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Yin, C.; Chang, J.; Pang, Y.; Lv, P.; Song, W.; Wang, X. Study on the Structure and Dielectric Properties of Zeolite/LDPE Nanocomposite under Thermal Aging. Polymers 2020, 12, 2108. [Google Scholar] [CrossRef] [PubMed]
- Ciuprina, F.; Plesa, I. DC and AC Conductivity of LDPE Nanocomposites. In Proceedings of the 2011 7th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 12–14 May 2011; pp. 1–6. [Google Scholar]
- Poh, L.; Wu, Q.; Chen, Y.; Narimissa, E. Characterization of Industrial Low-Density Polyethylene: A Thermal, Dynamic Mechanical, and Rheological Investigation. Rheol. Acta 2022, 61, 701–720. [Google Scholar] [CrossRef]
- Kemari, Y.; Teyssedre, G.; Mekhaldi, A.; Teguar, M. Dielectric Properties and Beta-Relaxation in Cross- Linked Polyethylene: Effect of Thermal Aging. In Proceedings of the 2020 IEEE 3rd International Conference on Dielectrics (ICD), Valencia, Spain, 5–31 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 73–76. [Google Scholar]
- Stancu, C.; Notingher, P.V.; Panaitescu, D.; Marinescu, V. Electrical Conductivity of Polyethylene-Neodymium Composites. In Proceedings of the 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6. [Google Scholar]
PLA | CA-10 | CA-20 | CA-30 | CA-40 | |
---|---|---|---|---|---|
WPLA (%) | 100 | 90 | 80 | 70 | 60 |
WCA (%) | 0 | 10 | 20 | 30 | 40 |
Nozzle temperature | 215 °C |
Nozzle size | 0.8 mm |
Printing speed | 30 mm·s−1 |
Sample thickness | 2 and 4 mm |
Layer thickness | 0.2 mm |
Infill pattern (BDS) | Concentric |
Infill pattern (DMA) | ±45 |
Bed temperature | 60 °C |
Dielectric Constant ε′ | Electrical Conductivity σAC (S·cm−1) | Storage Modulus E′ (MPa) | |||||||
---|---|---|---|---|---|---|---|---|---|
Material | T (°C) | Value | Ref | T (°C) | Value | Ref | T (°C) | Value | Ref |
CA-40 | 20 | 2.11 | Our study | 20 | 4 × 10−12 | Our study | 30 | 656 | Our study |
LDPE | Room T | 2.43 | [19] | 20 | 3 × 10−13 | [20] | 30 | 380 | [21] |
LDPE | Room T | 2.21 | [22] | 27 | 3 × 10−12 | [23] | 30 | 230 | [24] |
LDPE | Room T | 2.46 | [25] | 30 | 1 × 10−12 | [26] | 30 | 205 | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecoublet, M.; Ragoubi, M.; Leblanc, N.; Koubaa, A. Investigation of Thermomechanical and Dielectric Properties of PLA-CA 3D-Printed Biobased Materials. J. Compos. Sci. 2024, 8, 197. https://doi.org/10.3390/jcs8060197
Lecoublet M, Ragoubi M, Leblanc N, Koubaa A. Investigation of Thermomechanical and Dielectric Properties of PLA-CA 3D-Printed Biobased Materials. Journal of Composites Science. 2024; 8(6):197. https://doi.org/10.3390/jcs8060197
Chicago/Turabian StyleLecoublet, Morgan, Mohamed Ragoubi, Nathalie Leblanc, and Ahmed Koubaa. 2024. "Investigation of Thermomechanical and Dielectric Properties of PLA-CA 3D-Printed Biobased Materials" Journal of Composites Science 8, no. 6: 197. https://doi.org/10.3390/jcs8060197
APA StyleLecoublet, M., Ragoubi, M., Leblanc, N., & Koubaa, A. (2024). Investigation of Thermomechanical and Dielectric Properties of PLA-CA 3D-Printed Biobased Materials. Journal of Composites Science, 8(6), 197. https://doi.org/10.3390/jcs8060197