Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite
[...] Read more.
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite ceramic coatings were synthesized on a Ti6Al4V alloy using plasma electrolytic oxidation (PEO) in silicate-, phosphate-, and sulfate-based electrolytes, with and without the addition of α-alumina nanoparticles. The resulting coatings were comprehensively characterized to assess their surface morphology, chemical and phase compositions, and corrosion performance. Thus, the corrosion current density decreased from 9.7 × 10
4 for bare Ti6Al4V to 143 nA/cm
2 for the coating fabricated in phosphate electrolyte with alumina nanoparticles, while the corrosion potential shifted anodically from –0.68 to +0.49 V vs. silver chloride electrode in 5 M H
2SO
4. Among the tested electrolytes, coatings produced in the phosphate-based electrolyte with Al
2O
3 showed the highest polarization resistance (113 kΩ·cm
2), outperforming those fabricated in silicate- (71.6 kΩ·cm
2) and sulfate-based (89.0 kΩ·cm
2) systems. The composite coatings exhibited a multiphase structure with reduced surface porosity and the incorporation of crystalline oxide phases. Notably, titania–alumina nanoparticle composites demonstrated significantly enhanced corrosion resistance. These findings confirm that PEO-derived composite coatings provide an effective surface engineering strategy for enhancing the stability of the Ti6Al4V alloy in aggressive acidic environments relevant to advanced electrochemical systems.
Full article