Thermal, Mechanical, and Microstructural Properties of Novel Light Expanded Clay Aggregate (LECA)-Based Geopolymer Concretes
Abstract
:1. Introduction
2. Materials and Sample Preparation
Mix Design of LECA Geopolymers
3. Characterization Methods
3.1. Compression and Flexural Tests
3.2. Density
3.3. Thermal Conductivity
3.4. X-Ray Diffraction
3.5. Scanning Electron Microscopy Coupled with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX)
3.6. Water Vapor Permeability
4. Results and Discussion
4.1. Compressive and Flexural Strengths
4.2. Density and Thermal Conductivity
4.3. SEM-EDX
4.4. Water Vapor Permeability Measurements
5. Discussion and Comparison with the Current Literature
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- GCAP UNFCCC—Initiative. Available online: https://climateaction.unfccc.int/Initiatives?id=95 (accessed on 27 November 2024).
- Griffiths, S.; Sovacool, B.K.; Del Rio, D.D.F.; Foley, A.M.; Bazilian, M.D.; Kim, J.; Uratani, J.M. Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renew. Sustain. Energy Rev. 2023, 180, 113291. [Google Scholar] [CrossRef]
- Albidah, A.S. Effect of partial replacement of geopolymer binder materials on the fresh and mechanical properties: A review. Ceram. Int. 2021, 47, 14923–14943. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E. Environmental Factors Causing the Development of Microorganisms on the Surfaces of National Cultural Monuments Made of Mineral Building Materials—Review. Coatings 2020, 10, 1203. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Xu, M.; Cui, X. Preparation, characterization and application of geopolymer-based tubular inorganic membrane. Appl. Clay Sci. 2021, 203, 106001. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation. ACS Omega 2021, 6, 15532–15542. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Zhao, Y.; Bai, H.; Kang, S.; Zhang, T.; Song, S. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 2021, 267, 128900. [Google Scholar] [CrossRef]
- Neupane, K. Evaluation of environmental sustainability of one-part geopolymer binder concrete. Clean. Mater. 2022, 6, 100138. [Google Scholar] [CrossRef]
- Murugan, K.; Palaniappan, M.; kumar Kalappan, K. Experimental studies on light weight concrete using LECA material. Mater. Today Proc. 2023, 74, 1035–1041. [Google Scholar] [CrossRef]
- Mahmoud, H.A.; Tawfik, T.A.; El-Razik, M.M.A.; Faried, A.S. Mechanical and acoustic absorption properties of lightweight fly ash/slag-based geopolymer concrete with various aggregates. Ceram. Int. 2023, 49, 21142–21154. [Google Scholar] [CrossRef]
- Chaitanya, C.; Prasad, P.; Neeraja, D.; Ravitheja, A. Effect of LECA on mechanical properties of self-curing concrete. Mater. Today Proc. 2019, 19, 484–488. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E.; Abd Elrahman, M. An experimental investigation of the mechanical performance and structural application of LECA-Rubcrete. Constr. Build. Mater. 2018, 175, 239–253. [Google Scholar] [CrossRef]
- Baziak, A.; Pławecka, K.; Hager, I.; Castel, A.; Korniejenko, K. Development and Characterization of Lightweight Geopolymer Composite Reinforced with Hybrid Carbon and Steel Fibers. Materials 2021, 14, 5741. [Google Scholar] [CrossRef]
- Kozhukhova, N.I.; Glazkov, R.A.; Ageeva, M.S.; Kozhukhova, M.I.; Nikulin, I.S.; Zhernovskaya, I.V. Physical, Mechanical and Microstructural Characteristics of Perlite-Based Geopolymers Modified with Mineral Additives. J. Compos. Sci. 2024, 8, 211. [Google Scholar] [CrossRef]
- Huseien, G.F.; Kubba, Z.; Mhaya, A.M.; Malik, N.H.; Mirza, J. Impact Resistance Enhancement of Sustainable Geopolymer Composites Using High Volume Tile Ceramic Wastes. J. Compos. Sci. 2023, 7, 73. [Google Scholar] [CrossRef]
- Thienel, K.-C.; Haller, T.; Beuntner, N. Lightweight Concrete—From Basics to Innovations. Materials 2020, 13, 1120. [Google Scholar] [CrossRef] [PubMed]
- Ayati, B.; Ferrándiz-Mas, V.; Newport, D.; Cheeseman, C. Use of clay in the manufacture of lightweight aggregate. Constr. Build. Mater. 2018, 162, 124–131. [Google Scholar] [CrossRef]
- Mahmmod, L.M.R.; Dulaimi, A.; Bernardo, L.F.A.; Andrade, J.M.D.A. Characteristics of Lightweight Concrete Fabricated with Different Types of Strengthened Lightweight Aggregates. J. Compos. Sci. 2024, 8, 144. [Google Scholar] [CrossRef]
- Nahhab, A.H. Experimental Investigation on Sustainable Fibrous Lightweight Leca-Based Concrete with Fine Recycled Aggregates. GEOMATE J. 2024, 26, 37–45. [Google Scholar] [CrossRef]
- Markova, D.; Kravanja, G. Investigating the Impact Of LECA-To-Natural Aggregate Ratios On Lightweight Concrete Compo-sites. In Proceedings of the 7th International Conference on Technologies & Business Models for Circular Economy, Portorož, Slovenia, 4–6 September 2024; Volume 8, pp. 65–67. [Google Scholar]
- Geng, K.; Chai, J.; Qin, Y.; Li, X.; Duan, M.; Liang, D. Exploring the brittleness and fractal characteristics of basalt fiber reinforced concrete under impact load based on the principle of energy dissipation. Mater. Struct. 2022, 55, 78. [Google Scholar] [CrossRef]
- Masoule, M.S.T.; Bahrami, N.; Karimzadeh, M.; Mohasanati, B.; Shoaei, P.; Ameri, F.; Ozbakkaloglu, T. Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure. Ceram. Int. 2022, 48, 10347–10371. [Google Scholar] [CrossRef]
- Chanda, S.S.; Guchhait, S. A comprehensive review on the factors influencing engineering characteristics of lightweight geopolymer concrete. J. Build. Eng. 2024, 86, 108887. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Lu, M.; Chen, B.; Gao, S.; Bai, J.; Zhang, H.; Yang, Y. Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Constr. Build. Mater. 2021, 314, 125650. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2008, 29, 539–543. [Google Scholar] [CrossRef] [PubMed]
- TPS 1000—Instruments—Hot Disk. Available online: https://www.hotdiskinstruments.com/products/instruments/tps-1000/ (accessed on 19 November 2024).
- Khan, H.; Yerramilli, A.S.; D’Oliveira, A.; Alford, T.L.; Boffito, D.C.; Patience, G.S. Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 2020, 98, 1255–1266. [Google Scholar] [CrossRef]
- Friel, J.J.; Lyman, C.E. Tutorial Review: X-Ray Mapping in Electron-Beam Instruments. Microsc. Microanal. 2006, 12, 2–25. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.B.; Bouazza, A.; Faizal, M. Modifying ASTM E96 to assess water vapour transmission rates of geomembranes at high temperatures. Geotext. Geomembr. 2024, 52, 1054–1058. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S. A Comprehensive Review on Fly Ash-Based Geopolymer. J. Compos. Sci. 2022, 6, 219. [Google Scholar] [CrossRef]
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Ahmed, H.U.; Al Dughaishi, H.; Al Lawati, J.; Sabri, M.M.; Alkhatib, F.; Milad, A. Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis. Materials 2022, 15, 7098. [Google Scholar] [CrossRef]
- Omrane, M.; Rabehi, M. Effect of natural pozzolan and recycled concrete aggregates on thermal and physico-mechanical characteristics of self-compacting concrete. Constr. Build. Mater. 2020, 247, 118576. [Google Scholar] [CrossRef]
- Lucio-Martin, T.; Roig-Flores, M.; Izquierdo, M.; Alonso, M.C. Thermal conductivity of concrete at high temperatures for thermal energy storage applications: Experimental analysis. Solar Energy 2021, 214, 430–442. [Google Scholar] [CrossRef]
- Araújo, R.A.; Martinelli, A.E.; Cabral, K.C.; Dantas, A.F.O.A.; Silva, I.F.D.; Xavier, A.A.C.; Santos, A.L. Thermal performance of cement-leca composites for 3D printing. Constr. Build. Mater. 2022, 349, 128771. [Google Scholar] [CrossRef]
- Bao, J.; Li, S.; Zhang, P.; Xue, S.; Cui, Y.; Zhao, T. Influence of exposure environments and moisture content on water repellency of surface impregnation of cement-based materials. J. Mater. Res. Technol. 2020, 9, 12115–12125. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J.F. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2019, 156, 103611. [Google Scholar] [CrossRef]
- Mlih, R.; Bydalek, F.; Klumpp, E.; Yaghi, N.; Bol, R.; Wenk, J. Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands—A review. Ecol. Eng. 2020, 148, 105783. [Google Scholar] [CrossRef]
- Priyanka, M.; Karthikeyan, M.; Chand, M.S.R. Development of mix proportions of geopolymer lightweight aggregate concrete with LECA. Mater. Today Proc. 2020, 27, 958–962. [Google Scholar] [CrossRef]
- Khan, T.; Khan, A.; Shinde, B.H. Experimental Study of Fly Ash Based Lightweight Geopolymer Concrete with Partial Replacement of Coarse Aggregate by Artificial Lightweight Exapanded Clay Aggregate. Int. Res. J. Eng. Technol. 2021, 8, 4009–4015. Available online: www.irjet.net (accessed on 16 January 2025).
- Ouda, A.S.; Rashad, A.M. An investigation on the performance of lightweight mortar-based geopolymer containing high-volume LECA aggregate against high temperatures. Environ. Sci. Pollut. Res. 2021, 29, 26631–26647. [Google Scholar] [CrossRef] [PubMed]
- Youssf, O.; Mills, J.E.; Elchalakani, M.; Alanazi, F.; Yosri, A.M. Geopolymer Concrete with Lightweight Fine Aggregate: Material Performance and Structural Application. Polymers 2022, 15, 171. [Google Scholar] [CrossRef]
Parameter | Fly Ash % [m/m] |
---|---|
SiO2 | 38.46 |
Al2O3 | 22.61 |
Fe2O3 | 4.82 |
CaO | 23.80 |
MgO | 5.81 |
SO3 | 2.99 |
LOI (loss on ignition) | 1.51 |
Characteristics | Unit | Value |
---|---|---|
SiO2 | (%) | 25.4–29.2 |
Na2O | (%) | 8.2–8.6 |
Dry substances | (%) | 33.6–37.8 |
Density (20 °C) | (g/cm3) | 1.353–1.378 |
Viscosity (20 °C) | (mPas) | 30–100 |
pH (20 °C, 5% solution) | 11–12 | |
Molar ratio | 3.2–3.5 | |
Typical properties | Viscous liquid, almost colorless, free of visible impurities |
Characteristics | Unit | Value |
---|---|---|
Chemical formula | NaOH | |
CAS No. | 1310-73-2 | |
Molecular mass | (g/mol) | 39.99 |
NaOH content | 98% | |
Density | (g/cm3) | 2.13 |
Melting point | (°C) | 318 |
Solubility in water (20 °C) | g/100 g water | 111 |
Property | LECA | Standard Sand |
---|---|---|
Grain Size Distribution | 0–4 mm | 0.08–2.00 mm |
Bulk Density (kg/m3) | 760 | Not specified (high, compact sand) |
Crushing Resistance (N/mm2) | ≥12.0 | Not specified |
Thermal Conductivity (W/mK) | 0.125 | Not applicable |
Moisture Content | Not specified | ≤0.2% |
Fire Resistance | Euro Class A1 (non-combustible) | Not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podnar, T.M.; Kravanja, G. Thermal, Mechanical, and Microstructural Properties of Novel Light Expanded Clay Aggregate (LECA)-Based Geopolymer Concretes. J. Compos. Sci. 2025, 9, 69. https://doi.org/10.3390/jcs9020069
Podnar TM, Kravanja G. Thermal, Mechanical, and Microstructural Properties of Novel Light Expanded Clay Aggregate (LECA)-Based Geopolymer Concretes. Journal of Composites Science. 2025; 9(2):69. https://doi.org/10.3390/jcs9020069
Chicago/Turabian StylePodnar, Tinkara Marija, and Gregor Kravanja. 2025. "Thermal, Mechanical, and Microstructural Properties of Novel Light Expanded Clay Aggregate (LECA)-Based Geopolymer Concretes" Journal of Composites Science 9, no. 2: 69. https://doi.org/10.3390/jcs9020069
APA StylePodnar, T. M., & Kravanja, G. (2025). Thermal, Mechanical, and Microstructural Properties of Novel Light Expanded Clay Aggregate (LECA)-Based Geopolymer Concretes. Journal of Composites Science, 9(2), 69. https://doi.org/10.3390/jcs9020069