Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams
Abstract
:1. Introduction
1.1. Historical Account of Interfacial Rheology Measurements
1.2. The Modern Age of Interfacial Rheology
1.3. The Gibbs–Marangoni Effect
1.4. Frequency and Concentration Dependence of Rheology of Interfacial Layers
2. Measurement Techniques for Interfacial Rheology
2.1. The Two Deformation Cases: Interfacial Shear and Dilational Rheology
2.2. Shear Interfacial Rheology
2.3. Dilational Interfacial Rheology
3. Methods to Measure Interfacial Rheology
3.1. Shear Interfacial Rheology Methods
3.1.1. Deep Channel Viscometers
3.1.2. Interfacial Disk Rheometers
3.1.3. Interfacial Ring Viscometers
3.1.4. Magnetic Rod Interfacial Stress Rheometer
3.2. Dilational Interfacial Rheology Methods
- -
- At high frequencies (>500 Hz), methods such as capillary wave techniques dominate. In this range, polymer films adsorbed at the interface behave like insoluble monolayers, and their dynamic elasticity is mainly influenced by interactions between adsorbed macromolecules. Although capillary wave methods have been widely used since the 1980s, their popularity has declined due to difficulties in interpreting results.
- -
- Low-frequency methods (f < 1 Hz), including oscillating barrier techniques, have gained attention due to their simplicity and relevance in studying slow relaxation processes in polymer surface layers. These methods focus on resolving long-term, slow relaxation dynamics, which are important for understanding the behavior of polymer films at the interface.
3.2.1. Surface Wave Methods
3.2.2. Oscillating Barrier Method Using Langmuir Troughs
3.3. Oscillating Droplet Deformation Methods
3.3.1. Oscillating Pendant Drop Method
3.3.2. Capillary Pressure Method
3.4. Use of Machine Learning (ML) and Artificial Intelligence (AI) for Drop Shape Analysis in Complex Systems
- -
- (a) The Young–Laplace equation is employed to generate drop profiles. The drop profiles are influenced by two critical parameters, denoted as (dimensionless density difference) and (pressure parameter), which govern the shape and volume of the drop. The drop volume is determined by varying these parameters within a pre-defined range. The generated drop profiles serve as the foundational data for the subsequent stages of model training.
- -
- (b) Representative drop profile generated from the solution of the Young–Laplace equation. Small variations in parameters Bond number (Bo) and Worthington number (Wo) affect the drop shape and volume.
- -
- (c) Generated images used for training the CNN models. These images correspond to different surface tension values and exhibit variations in image quality and focus to simulate complex experimental conditions, such as the presence of particles.
- -
- (d) Experimental pendant drop images, which are used as inputs to the CNN model. These images were pre-processed to standardize them and enhance model accuracy.
- -
- (f) and (g) The trained CNN models predict Bo and γ.
3.5. The Oscillatory Spinning Drop Technique
- -
- Low-Frequency Regime (≤0.025 Hz): At very low frequencies, the oscillation period is sufficiently long to allow surfactant molecules to exchange between the bulk and the interface. This results in minimal surface concentration gradients and thus negligible Gibbs–Marangoni effects, leading to low dilational modulus values.
- -
- Medium-Frequency Regime (≥0.25 Hz): At higher frequencies, the oscillation period is short, limiting the time available for surfactant adsorption during droplet elongation. This causes the interface to behave more elastically, with the dilational modulus approaching a plateau corresponding to an “insoluble” monolayer.
3.6. Comment on Practical Tips to Measure Interfacial Properties in Some Systems
4. Recent Advances in Methods to Measure Rheology of Interfacial Layers
5. Applications of Interfacial Rheology in Dispersed Biphasic Systems
5.1. Interfacial Rheology and Film Thinning in Biphasic Emulsions and Foams, as Well as in Bicontinuous Microemulsions
5.2. Interfacial Rheological Properties to Study Asphaltene Behavior at Interfaces for Water in Crude Oil Emulsion Breaking
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ACN | Alkane Carbon Number |
AFM | Atomic Force Microscopy |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
CMC | Critical Micelle Concentration |
CNN | Convolutional Neural Network |
DC | Direct Current |
DWR | Double-wallRing |
EACN | Equivalent Alkane Carbon Number |
E′ | Elastic Dilational Modulus (Storage Modulus) |
E″ | Viscous Dilational Modulus (Loss Modulus) |
E* | Complex Dilational Modulus |
EON | Ethoxylation Number |
EOR | Enhanced Oil Recovery |
G′ | Elastic Shear Modulus (Storage Modulus) |
G″ | Viscous Shear Modulus (Loss Modulus) |
G* | Complex Shear Modulus |
HLD | Hydrophilic-Lipophilic Difference or Deviation |
HLDN | Normalized Hydrophilic-Lipophilic Difference or Deviation from optimum formulation |
ISR | Interfacial Stress Rheometer |
ML | Machine Learning |
O/W | Oil-in-Water |
OSDIR | Oscillatory Spinning Drop Interfacial Rheology |
PEO | Polyethylene Oxide |
PEG | Polyethylene Glycol |
PID | Proportional-Integral-Derivative |
PMMA | Polymethyl Methacrylate |
PSD | Power Spectral Density |
R/A | Resin to Asphaltene Ratio |
SAD | Surfactant Affinity Difference |
SDS | Sodium Dodecyl Sulfate |
SOW | Surfactant-Oil-Water |
SP | Surfactant-Polymer |
WIII | Winsor Type III |
W/O | Water-in-Oil |
References
- Miller, R.; Liggieri, L. (Eds.) Progress in Colloid and Interface Science: Vol 1. Interfacial Rheology; CRC Press: Boca Raton, FL, USA; Koninklijke Brill: Leiden, The Netherlands, 2009. [Google Scholar]
- Miller, R.; Liggieri, L. Interfacial Rheology-The Response of Two-Dimensional Layers on External Perturbations. Curr. Opin. Colloid Interface Sci. 2010, 15, 215–216. [Google Scholar] [CrossRef]
- Fuller, G.G.; Vermant, J. Complex Fluid-Fluid Interfaces: Rheology and Structure. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 519–543. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A. Dilational Surface Rheology of Polymer and Polymer/Surfactant Solutions. Curr. Opin. Colloid Interface Sci. 2010, 15, 229–236. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Bilibin, A.Y.; Zorin, I.M.; Miller, R. Dilational Surface Viscoelasticity of Polymer Solutions. Adv. Colloid Interface Sci. 2003, 104, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, N.M.; Simmons, M.J.H. Review of the Role of Surfactant Dynamics in Drop Microfluidics. Adv. Colloid Interface Sci. 2023, 312, 102844. [Google Scholar] [CrossRef]
- Kovalchuk, V.I.; Loglio, G.; Aksenenko, E.V.; Ravera, F.; Liggieri, L.; Schneck, E.; Miller, R. Dynamic Dilational Viscoelasticity of Surfactant Layers at Liquid-Liquid Interfaces. Curr. Opin. Colloid Interface Sci. 2024, 74, 101849. [Google Scholar] [CrossRef]
- Cai, Z.; Wei, Y.; Shi, A.; Zhong, J.; Rao, P.; Wang, Q.; Zhang, H. Correlation between Interfacial Layer Properties and Physical Stability of Food Emulsions: Current Trends, Challenges, Strategies, and Further Perspectives. Adv. Colloid Interface Sci. 2023, 313, 102863. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.B.; Bridot, J.L.; Freudenthal, O.; Langevin, D.; Mullins, O.C. Structure–Function Relations of Asphaltenes at the Interface. Energy Fuels 2023, 37, 17238–17249. [Google Scholar] [CrossRef]
- Sagis, L.M.C. Dynamic Properties of Interfaces in Soft Matter: Experiments and Theory. Rev. Mod. Phys. 2011, 83, 1367–1403. [Google Scholar] [CrossRef]
- Milyaeva, O.; Bykov, A.; Miller, R. Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov. Colloids Interfaces 2023, 7, 55. [Google Scholar] [CrossRef]
- Marquez, R.; Ontiveros, J.F.; Nardello-Rataj, V.; Sanson, N.; Lequeux, F.; Molinier, V. Formulating Stable Surrogate Wood Pyrolysis Oil-in-Oil (O/O) Emulsions: The Role of Asphaltenes Evidenced by Interfacial Dilational Rheology. Chem. Eng. J. 2024, 495, 153321. [Google Scholar] [CrossRef]
- Pelipenko, J.; Kristl, J.; Rošic, R.; Baumgartner, S.; Kocbek, P. Interfacial Rheology: An Overview of Measuring Techniques and Its Role in Dispersions and Electrospinning. Acta Pharm. 2012, 62, 123–140. [Google Scholar] [CrossRef]
- Aman, Z.M.; Olcott, K.; Pfeiffer, K.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Surfactant Adsorption and Interfacial Tension Investigations on Cyclopentane Hydrate. Langmuir 2013, 29, 2676–2682. [Google Scholar] [CrossRef] [PubMed]
- Kar, T.; Firoozabadi, A. Synergy of Polymer for Mobility Control and Surfactant for Interface Elasticity Increase in Improved Oil Recovery. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 21–23 September 2021. [Google Scholar] [CrossRef]
- Langevin, D. An Adventure into the World of Soft Matter. Annu. Rev. Condens. Matter Phys. 2023, 14, 21–33. [Google Scholar] [CrossRef]
- Marquez, R.; Forgiarini, A.M.; Langevin, D.; Salager, J.-L. Breaking of Water-In-Crude Oil Emulsions. Part 9. New Interfacial Rheology Characteristics Measured Using a Spinning Drop Rheometer at Optimum Formulation. Energy Fuels 2019, 33, 8151–8164. [Google Scholar] [CrossRef]
- Firouzi, M.; Kovalchuk, V.I.; Loglio, G.; Miller, R. Salt Effects on the Dilational Viscoelasticity of Surfactant Adsorption Layers. Curr. Opin. Colloid Interface Sci. 2022, 57, 101538. [Google Scholar] [CrossRef]
- Mucic, N.; Javadi, A.; Kovalchuk, N.M.; Aksenenko, E.V.; Miller, R. Dynamics of Interfacial Layers-Experimental Feasibilities of Adsorption Kinetics and Dilational Rheology. Adv. Colloid Interface Sci. 2011, 168, 167–178. [Google Scholar] [CrossRef]
- Langevin, D. Emulsions, Microemulsions and Foams; Springer: Gewerbestr, Switzerland, 2020; ISBN 978-3-030-55681-5. [Google Scholar]
- Kovalchuk, V.I.; Aksenenko, E.V.; Schneck, E.; Miller, R. Surfactant Adsorption Layers: Experiments and Modeling. Langmuir 2023, 39, 3537–3545. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, V.I.; Aksenenko, E.V.; Makievski, A.V.; Fainerman, V.B.; Miller, R. Dilational Interfacial Rheology of Tridecyl Dimethyl Phosphine Oxide Adsorption Layers at the Water/Hexane Interface. J. Colloid Interface Sci. 2019, 539, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Botti, T.C.; Hutin, A.; Quintella, E.; Carvalho, M.S. Effect of Interfacial Rheology on Drop Coalescence in Water–Oil Emulsion. Soft Matter 2022, 18, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Bergfreund, J.; Bertsch, P.; Fischer, P. Effect of the Hydrophobic Phase on Interfacial Phenomena of Surfactants, Proteins, and Particles at Fluid Interfaces. Curr. Opin. Colloid Interface Sci. 2021, 56, 101509. [Google Scholar] [CrossRef]
- Edwards, D.A.; Brenner, H.; Wasan, D.T. Interfacial Transport Processes and Rheology; Butterworths-Heinemann: Oxford, UK, 1991; ISBN 0750691859. [Google Scholar]
- Espinosa, G.; Langevin, D. Interfacial shear rheology of mixed polyelectrolyte− surfactant layers. Langmuir 2009, 25, 12201–12207. [Google Scholar] [CrossRef] [PubMed]
- Derkach, S.R.; Krägel, J.; Miller, R. Methods of Measuring Rheological Properties of Interfacial Layers (Experimental Methods of 2D Rheology). Colloid J. 2009, 71, 1–17. [Google Scholar] [CrossRef]
- Miller, R.; Ferri, J.K.; Javadi, A.; Krägel, J.; Mucic, N.; Wüstneck, R. Rheology of Interfacial Layers. Colloid Polym. Sci. 2010, 288, 937–950. [Google Scholar] [CrossRef]
- Samaniuk, J.R. Dynamics and Rheology of 2D Particles at Fluid–Fluid Interfaces. Curr. Opin. Colloid Interface Sci. 2024, 74, 101857. [Google Scholar] [CrossRef]
- Mendoza, A.J.; Guzmán, E.; Martínez-Pedrero, F.; Ritacco, H.; Rubio, R.G.; Ortega, F.; Starov, V.M.; Miller, R. Particle Laden Fluid Interfaces: Dynamics and Interfacial Rheology. Adv. Colloid Interface Sci. 2014, 206, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, O.S.; van den Ende, D.; Stuart, M.C.; Mugele, F.; Duits, M.H.G. Hard and Soft Colloids at Fluid Interfaces: Adsorption, Interactions, Assembly & Rheology. Adv. Colloid Interface Sci. 2015, 222, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Bykov, A.G.; Loglio, G.; Miller, R.; Noskov, B.A. Dilational Surface Elasticity of Monolayers of Charged Polystyrene Nano- and Microparticles at Liquid/Fluid Interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2015, 485, 42–48. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Patino, J.M.R. Interfacial Rheology of Protein–Surfactant Mixtures. Curr. Opin. Colloid Interface Sci. 2010, 15, 271–282. [Google Scholar] [CrossRef]
- Freer, E.; Yim, K.S.; Fuller, G.G.; Radke, C.J. Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface: Comparison of Shear and Dilatation Deformation. J. Phys. Chem. B 2004, 108, 3835–3844. [Google Scholar] [CrossRef]
- Benjamins, J.; Cagna, A.; Lucassen-Reynders, E.H. Viscoelastic Properties of Triacylglycerol/Water Interfaces Covered by Proteins. Colloids Surf. A Physicochem. Eng. Asp. 1996, 114, 245–254. [Google Scholar] [CrossRef]
- Noskov, B.A.; Latnikova, A.V.; Lin, S.-Y.; Loglio, G.; Miller, R. Dynamic Surface Elasticity of β-Casein Solutions during Adsorption. J. Phys. Chem. C 2007, 111, 16895–16901. [Google Scholar] [CrossRef]
- Yeung, A.; Zhang, L. Shear Effects in Interfacial Rheology and Their Implications on Oscillating Pendant Drop Experiments. Langmuir 2006, 22, 693–701. [Google Scholar] [CrossRef]
- Forbes, L.K.; Turner, R.J.; Walters, S.J. An Extended Boussinesq Theory for Interfacial Fluid Mechanics. J. Eng. Math. 2022, 133, 10. [Google Scholar] [CrossRef]
- Frumkin, A.N.; Levich, V.G. The Effect of Surface Active Agents on Motion at the Boundary of the Liquid Medium. J. Phys. Chem. 1947, 4, 41–45. [Google Scholar]
- Freer, E.M.; Yim, K.S.; Fuller, G.G.; Radke, C.J. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Langmuir 2004, 20, 10159–10167. [Google Scholar] [CrossRef]
- Sterling, C.V.; Scriven, L.E. Interfacial Turbulence: Hydrodynamic Instability and the Marangoni Effect. AIChE J. 1959, 5, 514–523. [Google Scholar] [CrossRef]
- Scriven, L.E.; Sterling, C.V. The Marangoni Effects. Nature 1960, 187, 186–188. [Google Scholar] [CrossRef]
- Scriven, L.E. Equilibrium Bicontinuous Structure. Nature 1976, 263, 123–125. [Google Scholar] [CrossRef]
- Scriven, L.E. Equilibrium Bicontinuous Structures. In Micellization, Solubilization, and Microemulsions; Mittal, K.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 877–893. [Google Scholar]
- Hoar, T.P.; Schulman, J.H. Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-Micelle. Nature 1943, 152, 102–103. [Google Scholar] [CrossRef]
- Schulman, J.H.; Stoeckenius, W.; Prince, L.M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. J. Phys. Chem. 1959, 63, 1677–1680. [Google Scholar] [CrossRef]
- Prince, L.M. Microemulsions versus Micelles. J. Colloid Interface Sci. 1975, 52, 182–188. [Google Scholar] [CrossRef]
- Shinoda, K.; Kunieda, H.; Prince, L. Microemulsions, Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1977; ISBN 978-0-12-565750-1. [Google Scholar]
- Prince, L. Schulman’s Microemulsions. In Microemulsions Theory and Practice; Prince, L., Ed.; Academic Press: Cambridge, MA, USA, 1977; pp. 1–20. ISBN 978-0-12-565750-1. [Google Scholar]
- Davis, H.T.; Scriven, L.E. The Origins of Low Interfacial Tensions for Enhanced Oil Recovery. Proc. SPE Annu. Tech. Conf. Exhib. 1980, 1980. [Google Scholar] [CrossRef]
- Durand, M.; Langevin, D.J. Physicochemical approach to the theory of foam drainage. Eur. Phys. J. E 2002, 7, 35–44. [Google Scholar] [CrossRef]
- Manikantan, H.; Squires, T.M. Surfactant Dynamics: Hidden Variables Controlling Fluid Flows. J. Fluid. Mech. 2020, 892, P1. [Google Scholar] [CrossRef]
- Levich, V.G. Physicochemical Hydrodynamics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Guzmán, E.; Maestro, A.; Carbone, C.; Ortega, F.; Rubio, R.G. Dilational Rheology of Fluid/Fluid Interfaces: Foundations and Tools. Fluids 2022, 7, 335. [Google Scholar] [CrossRef]
- Yaminsky, V.V.; Ohnishi, S.; Vogler, E.A.; Horn, R.G. Stability of Aqueous Films between Bubbles. Part 1. The Effect of Speed on Bubble Coalescence in Purified Water and Simple Electrolyte Solutions. Langmuir 2010, 26, 8061–8074. [Google Scholar] [CrossRef]
- Marangoni, C. Sul Principio Della Viscosita’ Superficiale Dei Liquidi Stabilito Dalsig. J. Plateau. Il Nuovo C. 1871, 5, 239–273. [Google Scholar] [CrossRef]
- Subramanian, R.S.; Balasubramaniam, R. The Motion of Bubbles and Drops in Reduced Gravity; Cambridge University Press: Cambridge, UK, 2001; ISBN 0521496055. [Google Scholar]
- Langevin, D.; Monroy, F. Marangoni stresses and surface compression rheology of surfactant solutions. Achievements and problems. Adv. Colloid Interface Sci. 2014, 206, 141–149. [Google Scholar] [CrossRef]
- Langevin, D. Rheology of Adsorbed Surfactant Monolayers at Fluid Surfaces. Annu. Rev. Fluid. Mech. 2014, 46, 47–65. [Google Scholar] [CrossRef]
- Van Voorst Vader, F.; Erkens, T.F.; Van Den Tempel, M. Measurement of Dilatational Surface Properties. Trans. Faraday Soc. 1964, 60, 1170–1177. [Google Scholar] [CrossRef]
- Langevin, D. Dynamics of Surfactant Layers. Curr. Opin. Colloid Interface Sci. 1998, 3, 600–607. [Google Scholar] [CrossRef]
- Chang, C.H.; Franses, E.I. Adsorption Dynamics of Surfactants at the Air/Water Interface: A Critical Review of Mathematical Models, Data, and Mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 1995, 100, 1–45. [Google Scholar] [CrossRef]
- Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V. Proteins and Emulsifiers at Liquid Interfaces. Adv. Colloid Interface Sci. 2004, 108–109, 63–71. [Google Scholar] [CrossRef]
- Jeribi, M.; Almir-Assad, B.; Langevin, D.; Henaut, I.; Argillier, J.F. Adsorption Kinetics of Asphaltenes at Liquid Interfaces. J. Colloid Interface Sci. 2002, 256, 268–272. [Google Scholar] [CrossRef]
- Yang, J.; Giménez-Ribes, G.; He, Q.; Habibi, M.; Sagis, L.M.C. Surface Dilatational and Foaming Properties of Whey Protein and Escin Mixtures. Food Hydrocoll. 2023, 144, 108941. [Google Scholar] [CrossRef]
- Giménez-Ribes, G.; Habibi, M.; Sagis, L.M.C. Interfacial Rheology and Relaxation Behavior of Adsorption Layers of the Triterpenoid Saponin Escin. J. Colloid Interface Sci. 2020, 563, 281–290. [Google Scholar] [CrossRef]
- Bhamla, M.S.; Chai, C.; Àlvarez-Valenzuela, M.A.; Tajuelo, J.; Fuller, G.G. Interfacial Mechanisms for Stability of Surfactant-Laden Films. PLoS ONE 2017, 12, e0175753. [Google Scholar] [CrossRef] [PubMed]
- Karbaschi, M.; Lotfi, M.; Krägel, J.; Javadi, A.; Bastani, D.; Miller, R. Rheology of Interfacial Layers. Curr. Opin. Colloid Interface Sci. 2014, 19, 514–519. [Google Scholar] [CrossRef]
- Eastoe, J.; Dalton, J.S. Dynamic Surface Tension and Adsorption Mechanisms of Surfactants at the Air–Water Interface. Adv. Colloid Interface Sci. 2000, 85, 103–144. [Google Scholar] [CrossRef]
- Langevin, D. Thin liquid films. In Emulsions, Microemulsions and Foams; Springer: Gewerbestr, Switzerland, 2020; pp. 71–127. ISBN 978-3-030-55681-5. [Google Scholar]
- Wierenga, P.A.; Kosters, H.; Egmond, M.R.; Voragen, A.G.J.; De Jongh, H.H.J. Importance of Physical vs. Chemical Interactions in Surface Shear Rheology. Adv. Colloid Interface Sci. 2006, 119, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Fainerman, V.B.; Lylyk, S.V.; Aksenenko, E.V.; Petkov, J.T.; Yorke, J.; Miller, R. Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 354, 8–15. [Google Scholar] [CrossRef]
- Mannheimer, R.J.; Schechter, R.S. An Improved Apparatus and Analysis for Surface Rheological Measurements. J. Colloid Interface Sci. 1970, 32, 195–211. [Google Scholar] [CrossRef]
- Slattery, J.C.; Chen, J.D.; Thomas, C.P.; Fleming, P.D. Spinning Drop Interfacial Viscometer. J. Colloid Interface Sci. 1980, 73, 483–499. [Google Scholar] [CrossRef]
- Krägel, J.; Siegel, S.; Miller, R.; Born, M.; Schano, K.H. Measurement of Interfacial Shear Rheological Properties: An Apparatus. Colloids Surf. A Physicochem. Eng. Asp. 1994, 91, 169–180. [Google Scholar] [CrossRef]
- Soo-Gun, O.H.; Slattery, J.C. Disk and Biconical Interfacial Viscometers. J. Colloid Interface Sci. 1978, 67, 516–525. [Google Scholar] [CrossRef]
- Vandebril, S.; Franck, A.; Fuller, G.G.; Moldenaers, P.; Vermant, J. A Double Wall-Ring Geometry for Interfacial Shear Rheometry. Rheol. Acta 2010, 49, 131–144. [Google Scholar] [CrossRef]
- Spiecker, P.M.; Kilpatrick, P.K. Interfacial Rheology of Petroleum Asphaltenes at the Oil–Water Interface. Langmuir 2004, 20, 4022–4032. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Simon, S.; Sjöblom, J. Interfacial Shear Rheology of Asphaltenes at Oil-Water Interface and Its Relation to Emulsion Stability: Influence of Concentration, Solvent Aromaticity and Nonionic Surfactant. Colloids Surf. A 2010, 366, 120. [Google Scholar] [CrossRef]
- Pensini, E.; Harbottle, D.; Yang, F.; Tchoukov, P.; Li, Z.; Kailey, I.; Behles, J.; Masliyah, J.; Xu, Z. Demulsification Mechanism of Asphaltene-Stabilized Water-in-Oil Emulsions by a Polymeric Ethylene Oxide-Propylene Oxide Demulsifier. Energy Fuels 2014, 28, 6760–6771. [Google Scholar] [CrossRef]
- Freer, E.; Svitova, T.; Radke, C.J. The Role of Interfacial Rheology in Reservoir Mixed Wettability. J. Pet. Sci. Eng. 2003, 39, 137. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, L.; Wang, Y.; Peng, B.; Zhao, S. Dynamic Dilational Properties of Oil-Water Interfacial Films Containing Surface Active Fractions from Crude Oil. J. Dispers. Sci. Technol. 2003, 24, 699. [Google Scholar] [CrossRef]
- Yarranton, H.W.; Sztukowski, D.M.; Urrutia, P. Effect of Interfacial Rheology on Model Emulsion Coalescence. I. Interfacial Rheology. J. Colloid Interface Sci. 2007, 310, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.; Poteau, S.; Argillier, J.-F.; Langevin, D.; Salager, J.-L. Heavy Oil−Water Interfacial Properties and Emulsion Stability: Influence of Dilution. Energy Fuels 2009, 23, 294–299. [Google Scholar] [CrossRef]
- Hegemann, J.; Knoche, S.; Egger, S.; Kott, M.; Demand, S.; Unverfehrt, A.; Rehage, H.; Kierfeld, J. Pendant capsule elastometry. J. Colloid Interface Sci. 2018, 513, 549–565. [Google Scholar] [CrossRef]
- Nagel, M.; Tervoort, T.A.; Vermant, J. From drop-shape analysis to stress-fitting elastometry. Adv. Colloid Interface Sci. 2017, 247, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Kairaliyeva, T.; Aksenenko, E.V.; Mucic, N.; Makievski, A.V.; Fainerman, V.B.; Miller, R. Surface Tension and Adsorption Studies by Drop Profile Analysis Tensiometry. J. Surfactants Deterg. 2017, 20, 1225–1241. [Google Scholar] [CrossRef]
- Zamora, J.M.; Marquez, R.; Forgiarini, A.; Langevin, D.; Salager, J.-L. Interfacial Rheology of Low Interfacial Tension Systems Using a New Oscillating Spinning Drop Method. J. Colloid Interface Sci. 2018, 519, 27–37. [Google Scholar] [CrossRef]
- Marquez, R.; Forgiarini, A.M.; Fernández, J.; Langevin, D.; Salager, J.-L. New Interfacial Rheology Characteristics Measured Using a Spinning-Drop Rheometer at the Optimum Formulation of a Simple Surfactant–Oil–Water System. J. Surfactants Deterg. 2018, 21, 611–623. [Google Scholar] [CrossRef]
- Marquez, R.; Forgiarini, A.M.; Langevin, D.; Salager, J.-L. Instability of Emulsions Made with Surfactant–Oil–Water Systems at Optimum Formulation with Ultralow Interfacial Tension. Langmuir 2018, 34, 9252–9263. [Google Scholar] [CrossRef] [PubMed]
- Renggli, D.; Alicke, A.; Ewoldt, R.H.; Vermant, J. Operating Windows for Oscillatory Interfacial Shear Rheology. J. Rheol. 2020, 64, 141–160. [Google Scholar] [CrossRef]
- Sánchez-Puga, P.; Tajuelo, J.; Pastor, J.M.; Rubio, M.A. Dynamic Measurements with the Bicone Interfacial Shear Rheometer: The Effects of the Numerical Implementation of the Interfacial Boundary Condition. Colloids Interfaces 2021, 5, 17. [Google Scholar] [CrossRef]
- Sanchez-Puga, P.; Rubio, M.A. DWR-Drag: A new generation software for the Double Wall-Ring Interfacial Shear Rheometer’s data analysis. Comput. Phys. Commun. 2025, 10, 109499. [Google Scholar] [CrossRef]
- Brooks, C.F.; Fuller, G.G.; Frank, C.W.; Robertson, C.R. An Interfacial Stress Rheometer to Study Rheological Transitions in Monolayers at the Air−Water Interface. Langmuir 1999, 15, 2450–2459. [Google Scholar] [CrossRef]
- Reynaert, S.; Brooks, C.F.; Moldenaers, P.; Vermant, J.; Fuller, G.G. Analysis of the Magnetic Rod Interfacial Stress Rheometer. J. Rheol. 2008, 52, 261–285. [Google Scholar] [CrossRef]
- Ciutara, C.O.; Barman, S.; Iasella, S.; Huang, B.; Zasadzinski, J.A. Dilatational and Shear Rheology of Soluble and Insoluble Monolayers with a Langmuir Trough. J. Colloid Interface Sci. 2023, 629, 125–135. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Fang, K.; Zou, G.; Peltonen, J.P.K.; Rosenholm, J.B. Elasticity of Langmuir Monolayer Detected by Dynamic Oscillation Method. Colloids Surf. A Physicochem. Eng. Asp. 2002, 201, 265–273. [Google Scholar] [CrossRef]
- Lucassen, J.; Hansen, R.S. Damping of Waves on Monolayer-Covered Surfaces. I. Systems with Negligible Surface Dilational Viscosity. J. Colloid Interface Sci. 1966, 22, 32–44. [Google Scholar] [CrossRef]
- Lucassen, J.; Van Den Tempel, M. Longitudinal Waves on Visco-Elastic Surfaces. J. Colloid Interface Sci. 1972, 41, 491–498. [Google Scholar] [CrossRef]
- Liggieri, L.; Attolini, V.; Ferrari, M.; Ravera, F. Measurement of the Surface Dilational Viscoelasticity of Adsorbed Layers with a Capillary Pressure Tensiometer. J. Colloid Interface Sci. 2002, 255, 225–235. [Google Scholar] [CrossRef]
- Maru, H.C.; Wasan, D.T. Dilational Viscoelastic Properties of Fluid Interfaces-II. Experimental Study. Chem. Eng. Sci. 1979, 34, 1295–1307. [Google Scholar] [CrossRef]
- Lopez, J.M.; Hirsa, A.H. Surfactant-Influenced Gas–Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities. J. Colloid Interface Sci. 2000, 229, 575–583. [Google Scholar] [CrossRef]
- Erni, P. Deformation Modes of Complex Fluid Interfaces. Soft Matter 2011, 7, 7586–7600. [Google Scholar] [CrossRef]
- Erni, P.; Fischer, P.; Windhab, E.J.; Kusnezov, V.; Stettin, H.; Läuger, J. Stress- and Strain-Controlled Measurements of Interfacial Shear Viscosity and Viscoelasticity at Liquid/Liquid and Gas/Liquid Interfaces. Rev. Sci. Instrum. 2003, 74, 4916–4924. [Google Scholar] [CrossRef]
- Bykov, A.G.; Lin, S.-Y.; Loglio, G.; Miller, R.; Noskov, B.A. Kinetics of Adsorption Layer Formation in Solutions of Polyacid/Surfactant Complexes. J. Phys. Chem. C 2009, 113, 5664–5671. [Google Scholar] [CrossRef]
- Verwijlen, T.; Moldenaers, P.; Vermant, J. A Fixture for Interfacial Dilatational Rheometry Using a Rotational Rheometer. Eur. Phys. J. Spec. Top. 2013, 222, 83–97. [Google Scholar] [CrossRef]
- Mannheimer, R.J.; Schechter, R.S. The Theory of Interfacial Viscoelastic Measurement by the Viscous-Traction Method. J. Colloid Interface Sci. 1970, 32, 225–241. [Google Scholar] [CrossRef]
- Sanchez-Puga, P.; Carrascosa-Tejedor, J.; Batchu, K.C.; Tajuelo, J.; Rubio, M.A.; Gutfreund, P.; Maestro, A. Integrating in-situ Shear Rheology with Neutron Reflectometry for Structural and Dynamic Analysis of Interfacial Systems. arXiv 2024, arXiv:2411.04660. [Google Scholar] [CrossRef]
- El Omari, Y.; Yousfi, M.; Duchet-Rumeau, J.; Maazouz, A. Interfacial rheology testing of molten polymer systems: Effect of molecular weight and temperature on the interfacial properties. Polym. Test. 2021, 101, 107280. [Google Scholar] [CrossRef]
- Ma, G.; Gong, Q.; Xu, Z.; Jin, Z.; Zhang, L. The Interfacial Dilational Rheology of Surfactant Solutions with Low Interfacial Tension. Molecules 2025, 30, 447. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhu, Y.W.; Liu, Y.; Zhang, L. Studies on interfacial interactions between extended surfactant and betaine by dilational rheology. Colloid Interface A Phys. Eng. Asp. 2025, 710, 136245. [Google Scholar] [CrossRef]
- Lucassen, J.; Van Den Tempel, M. Dynamic Measurements of Dilational Properties of a Liquid Interface. Chem. Eng. Sci. 1972, 27, 1283–1291. [Google Scholar] [CrossRef]
- Langevin, D. Motion of small bubbles and drops in viscoelastic fluids. Curr. Opin. Colloid Interface Sci. 2022, 57, 101529. [Google Scholar] [CrossRef]
- Langevin, D. Light Scattering by Liquid Surfaces, New Developments. Adv. Colloid Interface Sci. 2021, 289, 102368. [Google Scholar] [CrossRef] [PubMed]
- Sonin, A.A.; Bonfillon, A.; Langevin, D. Role of Surface Elasticity in the Drainage of Soap Films. Phys. Rev. Lett. 1993, 71, 2342. [Google Scholar] [CrossRef] [PubMed]
- Noskov, B.A.; Akentiev, A.V.; Loglio, G.; Miller, R. Dynamic Surface Properties of Solutions of Poly(Ethylene Oxide) and Polyethylene Glycols. J. Phys. Chem. B 2000, 104, 7923–7931. [Google Scholar] [CrossRef]
- Noskov, B.A.; Nuzhnov, S.N.; Loglio, G.; Miller, R. Dynamic Surface Properties of Sodium Poly(Styrenesulfonate) Solutions. Macromolecules 2004, 37, 2519–2526. [Google Scholar] [CrossRef]
- Javadi, A.; Liggieri, L.; Aksenenko, E.V.; Gochev, G.G.; Miller, R. Advances in Drop and Bubble Profile Analysis Tensiometry. Curr. Opin. Colloid Interface Sci. 2024, 73, 101846. [Google Scholar] [CrossRef]
- Noskov, B.A.; Loglio, G.; Miller, R. Dilational Viscoelasticity of Polyelectolyte/Surfactant Adsorption Films at the Air/Water Interface: Dodecyltrimethylammonium Bromide and Sodium Poly(Styrenesulfonate). J. Phys. Chem. B 2004, 108, 18615–18622. [Google Scholar] [CrossRef]
- Miller, R.; Wüstneck, R.; Krägel, J.; Kretzschmar, G. Dilational and Shear Rheology of Adsorption Layers at Liquid Interfaces. Colloids Surf. A Physicochem. Eng. Asp. 1996, 111, 75–118. [Google Scholar] [CrossRef]
- Langevin, D. Influence of Interfacial Rheology on Foam and Emulsion Properties. Adv. Colloid Interface Sci. 2000, 88, 209–222. [Google Scholar] [CrossRef]
- Ferri, J.K.; Stebe, K.J. Which Surfactants Reduce Surface Tension Faster? A Scaling Argument for Diffusion-Controlled Adsorption. Adv. Colloid Interface Sci. 2000, 85, 61–97. [Google Scholar] [CrossRef]
- Berry, J.D.; Neeson, M.J.; Dagastine, R.R.; Chan, D.Y.C.; Tabor, R.F. Measurement of Surface and Interfacial Tension Using Pendant Drop Tensiometry. J. Colloid Interface Sci. 2015, 454, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Ravera, F.; Loglio, G.; Kovalchuk, V.I. Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opin. Colloid Interface Sci. 2010, 15, 217–228. [Google Scholar] [CrossRef]
- Hyer, A.P.; McMillin, R.E.; Ferri, J.K. The Shape of Things to Come: Axisymmetric Drop Shape Analysis Using Deep Learning. J. Colloid Interface Sci. 2024, 653, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Kratz, F.S.; Kierfeld, J. Pendant Drop Tensiometry: A Machine Learning Approach. J. Chem. Phys. 2020, 153, 94102. [Google Scholar] [CrossRef]
- Soori, T.; Rassoulinejad-Mousavi, S.M.; Zhang, L.; Rokoni, A.; Sun, Y. A Machine Learning Approach for Estimating Surface Tension Based on Pendant Drop Images. Fluid. Phase Equilib. 2021, 538, 113012. [Google Scholar] [CrossRef]
- Chiwetelu, C.I.; Hornof, V.; Neale, G.H. The Measurement of Dynamic Interfacial Tension by Photo-Micropendography. J. Colloid Interface Sci. 1988, 125, 586–601. [Google Scholar] [CrossRef]
- Carbonaro, A.; Cipelletti, L.; Truzzolillo, D. Spinning Drop Dynamics in Miscible and Immiscible Environments. Langmuir 2019, 35, 11330–11339. [Google Scholar] [CrossRef]
- Shah, D.O.; Schechter, R. Improved Oil Recovery by Surfactant and Polymer Flooding; Academic Press: New York, NY, USA, 1977; ISBN 978-0-12-641750-0. [Google Scholar]
- Reed, R.L.; Healy, R.N. Some Physicochemical Aspects of Microemulsion Flooding: A Review. In Improved Oil Recovery by Surfactant and Polymer Flooding; Shah, D.O., Schechter, R.S., Eds.; Academic Press: New York, NY, USA, 1977; pp. 383–437. [Google Scholar]
- Wade, W.; Morgan, J.C.; Schechter, R.S.; Jacobson, J.K.; Salager, J.-L. Interfacial Tension and Phase Behavior of Surfactant Systems. Soc. Pet. Eng. J. 1978, 18, 242–252. [Google Scholar] [CrossRef]
- Al-Mjeni, R.; Arora, S.; Cherukupalli, P.; Van Wunnik, J.; Edwards, J.; Felber, B.J.; Gurpinar, O.; Hirasaki, G.J.; Miller, C.A.; Jackson, C.; et al. Has the Time Come for EOR? Oilfield Rev. 2010, 22, 16–35. [Google Scholar]
- Hirasaki, G.J.; Miller, C.A.; Puerto, M. Recent Advances in Surfactant EOR. SPE J. 2011, 16, 889–907. [Google Scholar] [CrossRef]
- Marquez, R.; Meza, L.; Alvarado, J.G.; Bullón, J.; Langevin, D.; Forgiarini, A.M.; Salager, J.-L. Interfacial Rheology Measured with a Spinning Drop Interfacial Rheometer: Particularities in More Realistic Surfactant–Oil–Water Systems Close to Optimum Formulation at HLDN = 0. J. Surfactants Deterg. 2021, 24, 587–601. [Google Scholar] [CrossRef]
- Saad, A.M.; Aime, S.; Chandra Mahavadi, S.; Song, Y.-Q.; Yutkin, M.P.; Weitz, D.; Patzek, T.W. Adsorption of Polar Species at Crude Oil–Water Interfaces: The Chemoelastic Behavior. Langmuir 2022, 38, 6523–6530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Grauby-Heywang, C.; Kellay, H.; Maali, A. Air/Water Interface Rheology Probed by Thermal Capillary Waves. Langmuir 2023, 39, 3332–3340. [Google Scholar] [CrossRef]
- Ma, J.; Haider, O.M.; Chang, C.-C.; Grzesiak, K.A.; Squires, T.M.; Walker, L.M. Solvent Quality and Aggregation State of Asphaltenes on Interfacial Mechanics and Jamming Behavior at the Oil/Water Interface. Langmuir 2023, 39, 15238–15248. [Google Scholar] [CrossRef] [PubMed]
- Alicke, A.; Simon, S.; Sjöblom, J.; Vermant, J. Assessing the Interfacial Activity of Insoluble Asphaltene Layers: Interfacial Rheology versus Interfacial Tension. Langmuir 2020, 36, 14942–14959. [Google Scholar] [CrossRef]
- Abi Chebel, N.; Piedfert, A.; Lalanne, B.; Dalmazzone, C.; Noïk, C.; Masbernat, O.; Risso, F. Interfacial Dynamics and Rheology of a Crude-Oil Droplet Oscillating in Water at a High Frequency. Langmuir 2019, 35, 9441–9455. [Google Scholar] [CrossRef] [PubMed]
- Marquez, R.; Bullón, J.; Forgiarini, A.; Salager, J.-L. The Oscillatory Spinning Drop Technique. An Innovative Method to Measure Dilational Interfacial Rheological Properties of Brine-Crude Oil Systems in the Presence of Asphaltenes. Colloids Interfaces 2021, 5, 42. [Google Scholar] [CrossRef]
- Kilpatrick, P.K. Water-in-Crude Oil Emulsion Stabilization: Review and Unanswered Questions. Energy Fuels 2012, 26, 4017–4026. [Google Scholar] [CrossRef]
- Marquez, R.; Acevedo, N.; Rondon, M.; Graciaa, A.; Daridon, J.-L.; Salager, J.-L. Breaking of Water-in-Crude Oil Emulsions. 10. Experimental Evidence from a Quartz Crystal Resonator Sensor and an Oscillating Spinning Drop Interfacial Rheometer. Energy Fuels 2023, 37, 2735–2749. [Google Scholar] [CrossRef]
- Sun, H.-Q.; Zhang, L.; Li, Z.Q.; Zhang, L.; Luo, L.; Zhao, S. Interfacial Dilational Rheology Related to Enhance Oil Recovery. Soft Matter 2011, 7, 7601–7611. [Google Scholar] [CrossRef]
- Wasan, D.T.; McNamara, J.J.; Shah, S.M.; Sampath, K.; Aderangi, N. The Role of Coalescence Phenomena and Interfacial Rheological Properties in Enhanced Oil Recovery: An Overview. J. Rheol. 1979, 23, 181–207. [Google Scholar] [CrossRef]
- Alsmaeil, A.W.; Aldakkan, B.S.; Kanj, M.Y.; Mullins, O.C.; Giannelis, E.P. Interfacial Shear Rheology of Oil–Water Interfaces: Investigating Effects of Aging, Salt Type, and Concentration. Energy Fuels. 2025, 39, 2534–2543. [Google Scholar] [CrossRef]
- Georgieva, D.; Cagna, A.; Langevin, D. Link between surface elasticity and foam stability. Soft Matter 2009, 5, 2063–2071. [Google Scholar] [CrossRef]
- Dinh, H.; Santanach-Carreras, E.; Schmitt, V.; Lequeux, F.; Panizza, P. Breaking of Emulsions with Chemical Additives: Using Surrogate Fluids to Develop a Novel Theoretical Framework and Its Application to Water-in-Crude Oil Emulsions. ACS Omega 2021, 6, 27976–27983. [Google Scholar] [CrossRef] [PubMed]
- Langevin, D. Recent Advances on Emulsion and Foam Stability. Langmuir 2023, 39, 3821–3828. [Google Scholar] [CrossRef] [PubMed]
- Winsor, P. Solvent Properties of Amphiphilic Compounds; Butterworths Scientific Publications: London, UK, 1954. [Google Scholar]
- Winsor, P. Hydrotropy, Solubilisation and Related Emulsification Processes. Trans. Faraday Soc. 1948, 44, 376–398. [Google Scholar] [CrossRef]
- Winsor, P.A. Binary and Multicomponent Solutions of Amphiphilic Compounds. Solubilization and the Formation, Structure, and Theoretical Significance of Liquid Crystalline Solutions. Chem. Rev. 1968, 68, 1–40. [Google Scholar] [CrossRef]
- Salager, J.-L.; Antón, R.E.; Bullón, J.; Forgiarini, A.; Marquez, R. How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. Cosmetics 2020, 7, 57. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, R. Enhanced Oil Recovery by Surfactant Injection Was Improved during the Last 50 Years Thanks to the Multivariable HLD Formulation Equation. Pet. Petrochem. Eng. J. 2023, 7, 1–25. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, R.; Rondon, M.; Bullon, J.; Graciaa, A. Review on Some Confusion Produced by the Bicontinuous Microemulsion Terminology and Its Domains Microcurvature: A Simple Spatiotemporal Model at Optimum Formulation of Surfactant-Oil-Water Systems. ACS Omega 2023, 8, 9040–9057. [Google Scholar] [CrossRef]
- Salager, J.-L.; Graciaa, A.; Marquez, R. Analyzing the Surfactant Classification Confusion through the HLD Formulation Equation. JCIS Open 2022, 8, 100060. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, R.; Bullón, J.; Forgiarini, A. Formulation in Surfactant Systems: From-Winsor-to-HLDN. Encyclopedia 2022, 2, 54. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, N.; Graciaa, A.; Lachaise, J. Partitioning of Ethoxylated Octylphenol Surfactants in Microemulsion-Oil-Water Systems: Influence of Temperature and Relation between Partitioning Coefficient and Physicochemical Formulation. Langmuir 2000, 16, 5534–5539. [Google Scholar] [CrossRef]
- Acree, W.E.; Chong, W.-K.; Lang, A.S.I.D.; Mozafari, H. Estimating Equivalent Alkane Carbon Number Using Abraham Solute Parameters. Liquids 2022, 2, 318–326. [Google Scholar] [CrossRef]
- Jang, S.H.; Pope, G.A. Microemulsion Phase Behavior of Live Crude Oil and Revisiting the EACN Framework for Crude Oils. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131565. [Google Scholar] [CrossRef]
- Delforce, L.; Duprat, F.; Ploix, J.-L.; Ontiveros, J.F.; Goussard, V.; Nardello-Rataj, V.; Aubry, J.-M. Fast Prediction of the Equivalent Alkane Carbon Number Using Graph Machines and Neural Networks. ACS Omega 2022, 7, 38869–38881. [Google Scholar] [CrossRef]
- Marquez, R.; Ontiveros, J.; Barrios, N.; Tolosa, L.; Palazzo, G.; Nardello-Rataj, V.; Salager, J.-L. Advantages and Limitations of Different Methods to Determine the Optimum Formulation in Surfactant–Oil–Water Systems: A Review. J. Surfactants Deterg. 2024, 27, 5–36. [Google Scholar] [CrossRef]
- Salager, J.-L.; Bullón, J.; Pizzino, A.; Rondón-González, M.; Tolosa, L. Emulsion Formulation Engineering for the Practitioner. In Encyclopedia of Surface and Colloid Science; Somasundaran, P., Ed.; Taylor & Francis: New York, NY, USA, 2010; Volume 1, pp. 1–6. [Google Scholar]
- Pessanha, T.M.; Varade, S.; Salonen, A.; Langevin, D. Coalescence Frequency in O/W Emulsions: Comparisons of Experiments with Models. Langmuir 2024, 40, 23695–23705. [Google Scholar] [CrossRef] [PubMed]
- Bridot, J.-L.; Langevin, D.; Mullins, O.C. Role of Asphaltene Origin in Its Adsorption at Oil–Water Interfaces. Energy Fuels 2022, 36, 8749–8759. [Google Scholar] [CrossRef]
- Marquez, R.; Antón, R.; Vejar, F.; Salager, J.L.; Forgiarini, A.M. New interfacial rheology characteristics measured using a spinning drop Rheometer at the optimum formulation. Part 2. Surfactant–oil–water systems with a high volume of middle-phase microemulsion. J. Surfactants Deterg. 2019, 22, 177–188. [Google Scholar] [CrossRef]
- Bancroft, W.D. The Theory of Emulsification, V. J. Phys. Chem. 1913, 17, 501–519. [Google Scholar] [CrossRef]
- Hildebrand, J.H. Emulsion Type. J. Phys. Chem. 1941, 45, 1303. [Google Scholar] [CrossRef]
- Ivanov, I.B.; Kralchevsky, P.A. Stability of Emulsions under Equilibrium and Dynamic Conditions. Colloids Surf. A Physicochem. Eng. Asp. 1997, 128, 155–175. [Google Scholar] [CrossRef]
- Ivanov, I.B.; Traykov, T.T. Hydrodynamics of Thin Liquid Films. Rate of Thinning of Emulsion Films from Pure Liquids. Int. J. Multiph. Flow. 1976, 2, 397. [Google Scholar] [CrossRef]
- Antón, R.E.; Salager, J.-L. Emulsion Instability in the Three-Phase Behavior Region of Surfactant-Alcohol-Oil-Brine Systems. J. Colloid Interface Sci. 1986, 111, 54–59. [Google Scholar] [CrossRef]
- Gradzielski, M.; Langevin, D.; Sottmann, T.; Strey, R. Droplet Microemulsions at the Emulsification Boundary: The Influence of the Surfactant Structure on the Elastic Constants of the Amphiphillic Film. J. Chem. Phys. 1997, 106, 8232–8238. [Google Scholar] [CrossRef]
- Sottmann, T.; Strey, R. Ultralow Interfacial Tensions in Water-n-Alkane-Surfactant Systems. J. Chem. Phys. 1997, 106, 8606–8615. [Google Scholar] [CrossRef]
- Wasan, D.T.; Mohan, V. Interfacial Rheological Properties of Fluid Interfaces Containing Surfactants. In Improved Oil Recovery by Surfactant and Polymer Flooding; Shah, D.O., Schechter, R.S., Eds.; Academic Press, INC.: New York, USA, 1977; pp. 161–203. [Google Scholar]
- Forgiarini, A.M.; Marquez, R.; Salager, J.L. Formulation improvements in the applications of surfactant–oil–water systems using the HLDN approach with extended surfactant structure. Molecules 2021, 26, 3771. [Google Scholar] [CrossRef] [PubMed]
- Slattery, J.C. Interfacial Effects in the Entrapment and Displacement of Residual Oil. AIChE J. 1974, 20, 1145–1154. [Google Scholar] [CrossRef]
- Garcia-Olvera, G.; Reilly, T.M.; Lehmann, T.E.; Alvarado, V. Effects of Asphaltenes and Organic Acids on Crude Oil-Brine Interfacial Visco-Elasticity and Oil Recovery in Low-Salinity Waterflooding. Fuel 2016, 185, 151–163. [Google Scholar] [CrossRef]
- Mohamed, M.I.; Alvarado, V. Smart Water Flooding in Berea Sandstone at Low Temperature: Is Wettability Alteration the Sole Mechanism at Play. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar] [CrossRef]
- Kar, T.; Chávez-Miyauchi, T.-E.; Firoozabadi, A.; Pal, M. Improved Oil Recovery in Carbonates by Ultralow Concentration of Functional Molecules in Injection Water through an Increase in Interfacial Viscoelasticity. Langmuir 2020, 36, 12160–12167. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Miyauchi, T.E.; Firoozabadi, A.; Fuller, G.G. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery. Langmuir 2016, 32, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Ayirala, S.C.; Yousef, A.A.; Li, Z.; Xu, Z. Coalescence of Crude Oil Droplets in Brine Systems: Effect of Individual Electrolytes. Energy Fuels 2018, 32, 5763–5771. [Google Scholar] [CrossRef]
- Briceño-Ahumada, Z.; Maldonado, A.; Impéror-Clerc, M.; Langevin, D. On the Stability of Foams Made with Surfactant Bilayer Phases. Soft Matter 2016, 12, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Wallon, L.; Salonen, A.; Langevin, D. Surfactant Monolayers at Oil–Water Interfaces. Behavior upon Compression and Relation to Emulsion Stability. J. Surfactants Deterg. 2024. [Google Scholar] [CrossRef]
- Bridot, J.L.; Langevin, D.; Mullins, O.C. Behavior upon Large Expansion of Asphaltene Layers at Oil–Water Interfaces. Energy Fuels 2024, 38, 20374–20383. [Google Scholar] [CrossRef]
- Pasquet, M.; Galvani, N.; Requier, A.; Cohen-Addad, S.; Höhler, R.; Pitois, O.; Rio, E.; Salonen, A.; Langevin, D. Coarsening Transitions of Wet Liquid Foams under Microgravity Conditions. Soft Matter 2023, 19, 6267–6279. [Google Scholar] [CrossRef] [PubMed]
- Galvani, N.; Pasquet, M.; Mukherjee, A.; Requier, A.; Cohen-Addad, S.; Pitois, O.; Höhler, R.; Rio, E.; Salonen, A.; Durian, D.J.; et al. Hierarchical Bubble Size Distributions in Coarsening Wet Liquid Foams. Proc. Natl. Acad. Sci. USA 2023, 120, e2306551120. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, M.; Galvani, N.; Pitois, O.; Cohen-Addad, S.; Höhler, R.; Chieco, A.T.; Dillavou, S.; Hanlan, J.M.; Durian, D.J.; Rio, E.; et al. Aqueous Foams in Microgravity, Measuring Bubble Sizes. C. R. Méc. 2023, 351, 139–161. [Google Scholar] [CrossRef]
- Lachaise, J.; Sahnoun, S.; Dicharry, C.; Mendiboure, B.; Salager, J.L. Improved Determination of the Initial Structure of Liquid Foams. Trends Colloid Interface Sci. V 2007, 256, 253–256. [Google Scholar] [CrossRef]
- Lachaise, J.; Breul, T.; Graciaa, A.; Marion, G.; Monsalve, A.; Salager, J.L. Foaming Properties of Surfactant-Oil-Water Systems in the Neighborhood of Optimum Formulation. J. Dispers. Sci. Technol. 1990, 11, 443–453. [Google Scholar] [CrossRef]
- Benali, B.; Fernø, M.A.; Halsøy, H.; Alcorn, Z.P. A Pore-Level Study of Dense-Phase CO2 Foam Stability in the Presence of Oil. Transp. Porous Media 2024, 151, 2491–2509. [Google Scholar] [CrossRef]
- Yoga, H.F.; Gasimli, N.R.; Johns, R.T. Reliable Equivalent Alkane Carbon Number Determination for Dead and Live Crudes in Microemulsion Systems. SPE J. 2024, 29, 4935–4949. [Google Scholar] [CrossRef]
- Roshanfekr, M.; Johns, R.T. Prediction of Optimum Salinity and Solubilization Ratio for Microemulsion Phase Behavior with Live Crude at Reservoir Pressure. Fluid. Phase Equilib. 2011, 304, 52–60. [Google Scholar] [CrossRef]
- Langevin, D. Coalescence in Foams and Emulsions: Similarities and Differences. Curr. Opin. Colloid Interface Sci. 2019, 44, 23–31. [Google Scholar] [CrossRef]
- Yeung, A.; Dabros, T.; Czarnecki, J.; Masliyah, J. On the Interfacial Properties of Micrometre-Sized Water Droplets in Crude Oil. Proc. R. Soc. A 1999, 455, 3709. [Google Scholar] [CrossRef]
- Aske, N.; Orr, R.; Sjöblom, J.; Kallevik, H.; Øye, G. Interfacial Properties of Water–Crude Oil Systems Using the Oscillating Pendant Drop. Correlations to Asphaltene Solubility by near Infrared Spectroscopy. J. Dispers. Sci. Technol. 2004, 25, 263–275. [Google Scholar] [CrossRef]
- Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil−Water Interfaces. Langmuir 2009, 25, 3985–3990. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zhang, J.; Wang, Z.; Zhang, Y. Correlations between Emulsification Behaviors of Crude Oil-Water Systems and Crude Oil Compositions. J. Pet. Sci. Eng. 2016, 146, 1–9. [Google Scholar] [CrossRef]
- Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S. Clusters of Amphiphilic Colloidal Spheres. Langmuir 2008, 24, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Ezrahi, S.; Tuval, E.; Aserin, A. Properties, Main Applications and Perspectives of Worm Micelles. Adv. Colloid Interface Sci. 2006, 128–130, 77–102. [Google Scholar] [CrossRef]
- Arai, N.; Yasuoka, K.; Masubuchi, Y. Spontaneous Self-Assembly Process for Threadlike Micelles. J. Chem. Phys. 2007, 126, 244905. [Google Scholar] [CrossRef]
- Fischer, J.; Porcar, L.; Cabral, J.T.; Sottmann, T. Shear-Induced Sponge-to-Lamellar Transition in Bicontinuous Microemulsions Evidenced by Microfluidic-SANS. J. Colloid Interface Sci. 2023, 635, 588–597. [Google Scholar] [CrossRef]
- Angle, C.W.; Hua, Y. Dilational Interfacial Rheology for Increasingly Deasphalted Bitumens and n -C5 Asphaltenes in Toluene/NaHCO 3 Solution. Energy Fuels 2012, 26, 6228–6239. [Google Scholar] [CrossRef]
- Nguyen, D.; Phan, J.; Balsamo, V. Effect of Diluents on Interfacial Properties and SAGD Emulsion Stability: I. In Interfacial Rheology. In Proceedings of the Society of Petroleum Engineers-SPE Heavy Oil Conference Canada 2013, Calgary, AB, Canada, 11–13 June 2013; Volume 1, pp. 261–273. [Google Scholar] [CrossRef]
- Meza, L.; Alvarado, J.G.; Marquez, R.; Forgiarini, A. Demulsifier’s Performance Evaluation Using the Optimum Formulation Concept HLD. Practical Case: Heavy Crude-Oil Diluted in Naphtha or in Synthetic Aromatic Oil. SPE J. 2022, 27, 1856–1866. [Google Scholar] [CrossRef]
- Yang, X.; Verruto, V.J.; Kilpatrick, P.K. Dynamic Asphaltene-Resin Exchange at the Oil/Water Interface: Time-Dependent W/O Emulsion Stability for Asphaltene/Resin Model Oils. Energy Fuels 2007, 21, 1343–1349. [Google Scholar] [CrossRef]
- Acevedo, S.; Escobar, G.; Gutiérrez, L.B.; Rivas, H.; Gutiérrez, X. Interfacial Rheological Studies of Extra-Heavy Crude Oils and Asphaltenes: Role of the Dispersion Effect of Resins in the Adsorption of Asphaltenes at the Interface of Water-in-Crude Oil Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 1993, 71, 65–71. [Google Scholar] [CrossRef]
- Alves, D.R.; Carneiro, J.S.A.; Oliveira, I.F.; Façanha, F.; Santos, A.F.; Dariva, C.; Franceschi, E.; Fortuny, M. Influence of the Salinity on the Interfacial Properties of a Brazilian Crude Oil-Brine Systems. Fuel 2014, 118, 21–26. [Google Scholar] [CrossRef]
- Poteau, S.; Argillier, J.-F.; Langevin, D.; Pincet, F.; Perez, E. Influence of pH on Stability and Dynamic Properties of Asphaltenes and Other Amphiphilic Molecules at the Oil−Water Interface. Energy Fuels 2005, 19, 1337–1341. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, R.; Delgado-Linares, J.G.; Rondon, M.; Forgiarini, A. Fundamental Basis for Action of a Chemical Demulsifier Revisited after 30 Years: HLDN as the Primary Criterion for Water-in-Crude Oil Emulsion Breaking. Energy Fuels 2022, 36, 711–730. [Google Scholar] [CrossRef]
- Bazazi, P.; Hejazi, S.H. Cellulose Nanocrystal Laden Oil–Water Interfaces: Interfacial Viscoelasticity, Emulsion Stability, and the Dynamics of Three-Phase Contact-Lines. Ind. Eng. Chem. Res. 2021, 60, 4892–4902. [Google Scholar] [CrossRef]
- Abbasi Moud, A.A. Flow and Assembly of Cellulose Nanocrystals (CNC): A Bottom-up Perspective-A Review. Int. J. Biol. Macromol. 2023, 232, 123391. [Google Scholar] [CrossRef] [PubMed]
- Alsmaeil, A.W.; Mohammed, S.; Aldakkan, B.S.; Chalmpes, N.; Kouloumpis, A.; Potsi, G.; Galvin, A.; Gadikota, G.; Kanj, M.Y.; Giannelis, E.P. Fine-Tuning the Surface and Interfacial Chemistry of Silica Nanoparticles to Control Stability in High Ionic Strength Electrolytes and Modulate Assembly at Oil–Water Interfaces. Chem. Mater. 2023, 35, 9150–9159. [Google Scholar] [CrossRef]
- Alsmaeil, A.W.; Kouloumpis, A.; Potsi, G.; Hammami, M.A.; Kanj, M.Y.; Giannelis, E.P. Probing the Interfacial Properties of Oil–Water Interfaces Decorated with Ionizable, pH Responsive Silica Nanoparticles. Langmuir 2023, 39, 3118–3130. [Google Scholar] [CrossRef]
- Hossain, K.Z.; Kamran, S.A.; Tavakkoli, A.; Khan, M.R. Machine Learning (ML)-Assisted Surface Tension and Oscillation-Induced Elastic Modulus Studies of Oxide-Coated Liquid Metal (LM) Alloys. J. Phys. Mater. 2023, 6, 45009. [Google Scholar] [CrossRef]
- Kar, T.; Cho, H.; Firoozabadi, A. Assessment of Low Salinity Waterflooding in Carbonate Cores: Interfacial Viscoelasticity and Tuning Process Efficiency by Use of Non-Ionic Surfactant. J. Colloid Interface Sci. 2022, 607, 125–133. [Google Scholar] [CrossRef]
Method | Geometry | Frequency Range | Interfacial Tension Thresholds | Moduli Range | Advantages | Limitations | Ref |
---|---|---|---|---|---|---|---|
Shear Methods | |||||||
Deep channel viscometer | ~0–1 Hz | >5 mN/m | G′ ~1–50 mN/m |
|
| [73] | |
Bicone rheometer | 0.001–10 Hz | >1 mN/m | G′ ~1–100 mN/m |
|
| [76,92] | |
Ring viscometer | 0.01–10 Hz | >1 mN/m | G′ up to ~100 mN/m |
|
| [75,77,93] | |
Magnetic rod interfacial rheometer | 0.1–10 rad/s | >5 mN/m | G′ up to ~100 mN/m |
|
| [94,95] | |
Dilational methods | |||||||
Oscillating Langmuir trough | 0.001–1 Hz | >10 mN/m | E′ up to ~200 mN/m |
|
| [96,97] | |
Capillary and longitudinal waves | 10–500 Hz | >15 mN/m | E′ up to ~200 mN/m |
|
| [20,98,99] | |
Oscillating pendant drop | 0.001–1 Hz | ~1–100 mN/m | E′ ~1–100 mN/m |
|
| [1,27,35] | |
Oscillating spinning drop | 0.001–1 Hz | ~1–100 mN/m | E′ up to ~100 mN/m |
|
| [74,88,89,90] | |
Capillary pressure | 0.01–0.25 Hz | 10−4–10 mN/m | E + G up to ~10–50 |
|
| [100] |
System | Tension (mN/m) | Droplet Volume (µL) | Recommended Rotational Speed Interval (rpm) 1 | Approximate Equilibration Time |
---|---|---|---|---|
Surfactant–air–water | 10–40 | 20–25 | 7000–10,000 | 30 min to a few hours |
Oil–water (with asphaltenes) | 10–40 | 20–25 | 7000–10,000 | 1 h to several hours |
SOW with high interfacial tension | 2–10 | 10–20 | 6000–10,000 | 20 min to 2 h |
SOW system with low interfacial tension | 0.1–2 | 5–10 | 4000–6000 | 20 min to 2 h |
SOW system with ultralow interfacial tension | 10−4–0.1 | 0.5–5 | 3000–4000 | 1 min to 1 h |
System | Measurement Method | Equations | Frequency Range | Novelty | Reference |
---|---|---|---|---|---|
Review on Adsorption Layers at Liquid Interfaces |
|
|
|
| Kovalchuk et al. [21] |
Tween 80 Surfactant at Crude Oil–Water Interfaces |
|
|
|
| Saad et al. [136] |
Triton X30 Surfactant at Air/Water Interfaces |
|
|
|
| Zhang et al. [137] |
Crude Oil–Water Interface with Asphaltenes |
|
|
|
| Ma et al. [138] |
Insoluble Asphaltene Layers at Oil–Water Interfaces |
|
|
| Alicke et al. [139] | |
Interfacial Dynamics and Rheology of a Crude Oil Droplet Oscillating in Water at a High Frequency |
|
|
| Chebel et al. [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquez, R.; Salager, J.-L. Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams. Colloids Interfaces 2025, 9, 14. https://doi.org/10.3390/colloids9010014
Marquez R, Salager J-L. Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams. Colloids and Interfaces. 2025; 9(1):14. https://doi.org/10.3390/colloids9010014
Chicago/Turabian StyleMarquez, Ronald, and Jean-Louis Salager. 2025. "Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams" Colloids and Interfaces 9, no. 1: 14. https://doi.org/10.3390/colloids9010014
APA StyleMarquez, R., & Salager, J.-L. (2025). Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams. Colloids and Interfaces, 9(1), 14. https://doi.org/10.3390/colloids9010014