Sleep Research in the Era of AI
Abstract
:1. Introduction
2. AI in Clinical Sleep Research
2.1. AI as a Helper: The Case of Automating Sleep Scoring
2.2. AI for Augmenting Clinical Diagnosis: The Case of Sleep-Wake Disorders
2.3. AI for Moving Sleep Outside Sleep Labs: The Case of Wearables
2.4. AI for Hypothesis Testing: Pattern Analysis for Studying Sleep and Memory
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef]
- De Lucia, M.; Tzovara, A. Decoding auditory EEG responses in healthy and clinical populations: A comparative study. J. Neurosci. Methods 2015, 250, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Aellen, F.M.; Van der Meer, J.; Dietmann, A.; Schmidt, M.; Bassetti, C.L.A.; Tzovara, A. Disentangling the complex landscape of sleep–wake disorders with data-driven phenotyping: A study of the Bernese center. Eur. J. Neurol. 2023, 31, e16026. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 1 November 2023).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385v1. [Google Scholar] [CrossRef]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef] [PubMed]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed]
- Stephansen, J.B.; Olesen, A.N.; Olsen, M.; Ambati, A.; Leary, E.B.; Moore, H.E.; Carrillo, O.; Lin, L.; Han, F.; Yan, H.; et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018, 9, 5229. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.S.; Van Hout, S. The American Academy of Sleep Medicine Inter-scorer Reliability Program: Sleep Stage Scoring. Sleep Med. 2013, 9, 81–87. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, X.; Kantelhardt, J.W.; Li, J.; Zhao, L.; Garcia, C.; Glos, M.; Penzel, T.; Han, F. Process and outcome for international reliability in sleep scoring. Sleep Breath. 2015, 19, 191–195. [Google Scholar] [CrossRef]
- Danker-Hopfe, H.; Anderer, P.; Zeitlhofer, J.; Boeck, M.; Dorn, H.; Gruber, G.; Heller, E.; Loretz, E.; Moser, D.; Parapatics, S.; et al. Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. J. Sleep Res. 2009, 18, 74–84. [Google Scholar] [CrossRef]
- Şen, B.; Peker, M.; Çavuşoğlu, A.; Çelebi, F.V. A Comparative Study on Classification of Sleep Stage Based on EEG Signals Using Feature Selection and Classification Algorithms. J. Med. Syst. 2014, 38, 18. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Puiatti, A.; Papandrea, M.; Ratti, P.-L.; Favaro, P.; Roth, C.; Bargiotas, P.; Bassetti, C.L.; Faraci, F.D. Automated sleep scoring: A review of the latest approaches. Sleep Med. Rev. 2019, 48, 101204. [Google Scholar] [CrossRef] [PubMed]
- Vallat, R.; Walker, M.P. An open-source, high-performance tool for automated sleep staging. eLife 2021, 10, e70092. [Google Scholar] [CrossRef] [PubMed]
- Perslev, M.; Darkner, S.; Kempfner, L.; Nikolic, M.; Jennum, P.J.; Igel, C. U-Sleep: Resilient high-frequency sleep staging. npj Digit. Med. 2021, 4, 72. [Google Scholar] [CrossRef] [PubMed]
- Iber, C. Das AASM-Manual zum Scoring von Schlaf und Assoziierten Ereignissen: Regeln, Terminologie und Technische Spezifikationen; Auflage: Heidelberg, Germany.
- Fiorillo, L.; Monachino, G.; van der Meer, J.; Pesce, M.; Warncke, J.D.; Schmidt, M.H.; Bassetti, C.L.A.; Tzovara, A.; Favaro, P.; Faraci, F.D. U-Sleep’s resilience to AASM guidelines. NPJ Digit. Med. 2023, 6, 33. [Google Scholar] [CrossRef]
- Kerkhof, G.A. Epidemiology of sleep and sleep disorders in The Netherlands. Sleep Med. 2017, 30, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, K.; Ray, S.; Shukla, G. Unmet need for a holistic approach to insomnia diagnosis—A review of current tools in practice. Sleep Epidemiol. 2023, 3, 100055. [Google Scholar] [CrossRef]
- Zubler, F.; Tzovara, A. Deep learning for EEG-based prognostication after cardiac arrest: From current research to future clinical applications. Front. Neurol. 2023, 14, 1183810. [Google Scholar] [CrossRef]
- Gool, J.K.; Zhang, Z.; Oei, M.S.; Mathias, S.; Dauvilliers, Y.; Mayer, G.; Plazzi, G.; del Rio-Villegas, R.; Cano, J.S.; Šonka, K.; et al. Data-Driven Phenotyping of Central Disorders of Hypersomnolence with Unsupervised Clustering. Neurology 2022, 98, e2387–e2400. [Google Scholar] [CrossRef]
- Cook, J.; Rumble, M.; Plante, D. Identifying subtypes of Hypersomnolence Disorder: A clustering analysis. Sleep Med. 2019, 64, 71–76. [Google Scholar] [CrossRef]
- Miller, C.B.; Bartlett, D.J.; Mullins, A.E.; Dodds, K.L.; Gordon, C.J.; Kyle, S.D.; Kim, J.W.; D’Rozario, A.L.; Lee, R.S.; Comas, M.; et al. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability. Sleep 2016, 39, 1993–2004. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.-H.; D’rozario, A.L.; Lovato, N.; Wassing, R.; Bartlett, D.; Memarian, N.; Espinel, P.; Kim, J.-W.; Grunstein, R.R.; Gordon, C.J. Insomnia subtypes characterised by objective sleep duration and NREM spectral power and the effect of acute sleep restriction: An exploratory analysis. Sci. Rep. 2021, 11, 24331. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.A.; Hamza, K.; Sands, S.; Turton, A.; Berger, P.; Hamilton, G. Phenotypes of patients with mild to moderate obstructive sleep apnoea as confirmed by cluster analysis. Respirology 2012, 17, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Destors, M.; Grillet, Y.; Richard, P.; Stach, B.; Vivodtzev, I.; Timsit, J.-F.; Lévy, P.; Tamisier, R.; Pépin, J.-L.; et al. Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis. PLoS ONE 2016, 11, e0157318. [Google Scholar] [CrossRef]
- Venkatnarayan, K.; Krishnaswamy, U.M.; Rajamuri, N.K.R.; Selvam, S.; Veluthat, C.; Devaraj, U.; Ramachandran, P.; D’souza, G. Identifying phenotypes of obstructive sleep apnea using cluster analysis. Sleep Breath. 2023, 27, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Šonka, K.; Šusta, M.; Billiard, M. Narcolepsy with and without cataplexy, idiopathic hypersomnia with and without long sleep time: A cluster analysis. Sleep Med. 2015, 16, 225–231. [Google Scholar] [CrossRef]
- Dietmann, A.; Wenz, E.; van Der Meer, J.; Ringli, M.; Warncke, J.D.; Edwards, E.; Schmidt, M.H.; Bernasconi, C.A.; Nirkko, A.; Strub, M.; et al. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS): Study Protocol for a Prospective, Multi Center Cohort Observational Study. J. Sleep Res. 2021, 30, e13296. [Google Scholar] [CrossRef]
- Schindler, K.A.; Nef, T.; Baud, M.O.; Tzovara, A.; Yilmaz, G.; Tinkhauser, G.; Gerber, S.M.; Gnarra, O.; Warncke, J.D.; Schütz, N.; et al. NeuroTec Sitem-Insel Bern: Closing the Last Mile in Neurology. Clin. Transl. Neurosci. 2021, 5, 13. [Google Scholar] [CrossRef]
- Huysmans, D.; Borzée, P.; Buyse, B.; Testelmans, D.; Van Huffel, S.; Varon, C. Sleep Diagnostics for Home Monitoring of Sleep Apnea Patients. Front. Digit. Health 2021, 3, 685766. [Google Scholar] [CrossRef]
- Wulterkens, B.M.; Fonseca, P.; Hermans, L.W.; Ross, M.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.P.; Vandenbussche, N.; Pillen, S.; et al. It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography. Nat. Sci. Sleep 2021, 13, 885–897. [Google Scholar] [CrossRef]
- Stein, P.K.; Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 2012, 16, 47–66. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.; Zhang, X.; Wei, X.; Hou, F.; Ma, Y. Sleep heart rate variability assists the automatic prediction of long-term cardiovascular outcomes. Sleep Med. 2020, 67, 217–224. [Google Scholar] [CrossRef]
- Dafna, E.; Tarasiuk, A.; Zigel, Y. Sleep staging using nocturnal sound analysis. Sci. Rep. 2018, 8, 13474. [Google Scholar] [CrossRef]
- Kalkbrenner, C.; Brucher, R.; Kesztyüs, T.; Eichenlaub, M.; Rottbauer, W.; Scharnbeck, D. Automated Sleep Stage Classification Based on Tracheal Body Sound and Actigraphy. GMS Ger. Med. Sci. 2019, 17, Doc02. [Google Scholar] [CrossRef]
- Akyol, S.; Yildirim, M.; Alatas, B. Multi-feature fusion and improved BO and IGWO metaheuristics based models for automatically diagnosing the sleep disorders from sleep sounds. Comput. Biol. Med. 2023, 157, 106768. [Google Scholar] [CrossRef]
- Katori, M.; Shi, S.; Ode, K.L.; Tomita, Y.; Ueda, H.R. The 103,200-arm acceleration dataset in the UK Biobank revealed a landscape of human sleep phenotypes. Proc. Natl. Acad. Sci. USA 2022, 119, e2116729119. [Google Scholar] [CrossRef]
- Katsuki, M.; Tatsumoto, M.; Kimoto, K.; Iiyama, T.; Tajima, M.; Munakata, T.; Miyamoto, T.; Shimazu, T. Investigating the effects of weather on headache occurrence using a smartphone application and artificial intelligence: A retrospective observational cross-sectional study. Headache 2023, 63, 585–600. [Google Scholar] [CrossRef]
- Ong, J.L.; Golkashani, H.A.; Ghorbani, S.; Wong, K.F.; Chee, N.I.; Willoughby, A.R.; Chee, M.W. Selecting a sleep tracker from EEG-based, iteratively improved, low-cost multisensor, and actigraphy-only devices. Sleep Health 2023. [Google Scholar] [CrossRef]
- Grootswagers, T.; Wardle, S.G.; Carlson, T.A. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. J. Cogn. Neurosci. 2017, 29, 677–697. [Google Scholar] [CrossRef]
- Aellen, F.M.; Göktepe-Kavis, P.; Apostolopoulos, S.; Tzovara, A. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features. J. Neurosci. Methods 2021, 364, 109367. [Google Scholar] [CrossRef]
- Louie, K.; Wilson, M.A. Temporally Structured Replay of Awake Hippocampal Ensemble Activity during Rapid Eye Movement Sleep. Neuron 2001, 29, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Skaggs, W.E.; McNaughton, B.L. Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience. Science 1996, 271, 1870–1873. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Wilson, M.A. Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep. Neuron 2002, 36, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, B.E.; Foster, D.J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 2013, 497, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Schönauer, M.; Alizadeh, S.; Jamalabadi, H.; Abraham, A.; Pawlizki, A.; Gais, S. Decoding material-specific memory reprocessing during sleep in humans. Nat. Commun. 2017, 8, 15404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fell, J.; Axmacher, N. Electrophysiological mechanisms of human memory consolidation. Nat. Commun. 2018, 9, 4103. [Google Scholar] [CrossRef] [PubMed]
- Belal, S.; Cousins, J.; El-Deredy, W.; Parkes, L.; Schneider, J.; Tsujimura, H.; Zoumpoulaki, A.; Perapoch, M.; Santamaria, L.; Lewis, P. Identification of memory reactivation during sleep by EEG classification. NeuroImage 2018, 176, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Sterpenich, V.; van Schie, M.K.M.; Catsiyannis, M.; Ramyead, A.; Perrig, S.; Yang, H.-D.; Van De Ville, D.; Schwartz, S. Reward biases spontaneous neural reactivation during sleep. Nat. Commun. 2021, 12, 4162. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing bias in big data and AI for health care: A call for open science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef]
- Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Göktepe-Kavis, P.; Aellen, F.M.; Alnes, S.L.; Tzovara, A. Sleep Research in the Era of AI. Clin. Transl. Neurosci. 2024, 8, 13. https://doi.org/10.3390/ctn8010013
Göktepe-Kavis P, Aellen FM, Alnes SL, Tzovara A. Sleep Research in the Era of AI. Clinical and Translational Neuroscience. 2024; 8(1):13. https://doi.org/10.3390/ctn8010013
Chicago/Turabian StyleGöktepe-Kavis, Pinar, Florence M. Aellen, Sigurd L. Alnes, and Athina Tzovara. 2024. "Sleep Research in the Era of AI" Clinical and Translational Neuroscience 8, no. 1: 13. https://doi.org/10.3390/ctn8010013
APA StyleGöktepe-Kavis, P., Aellen, F. M., Alnes, S. L., & Tzovara, A. (2024). Sleep Research in the Era of AI. Clinical and Translational Neuroscience, 8(1), 13. https://doi.org/10.3390/ctn8010013