Effect of Nebulized BromAc on Rheology of Artificial Sputum: Relevance to Muco-Obstructive Respiratory Diseases
Abstract
:Highlights
- BromAc is a better mucolytic compared to bromelain or N-acetylcysteine alone.
- BromAc reduces the viscosity and increases the flow rate of mucin.
- This ex vivo study suggest that testing BromAc in pre-clinical and clinical studies is warranted.
- BromAc is a potent mucolytic for respiratory disease patients.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement of Size Distribution of Aerosols
2.3. Artificial Sputa Preparation
2.4. Preparation of PMP Mucin as a Model of Sputa
2.5. Measurement of Apparent Viscosity
2.6. Measurement of Pipette Flow Time
2.7. Apparatus Set-Up
2.8. Treatment of Artificial Sputa (AS)
2.9. Treatment of PMP Mucin Simulated Sputa (SS)
2.10. Measurement of Bromelain in Aerosolized Sputum Samples
2.11. Measurement of Acetylcysteine in Sputum Samples
2.12. Determination of Combination Index (CI) of Bromelain and N-Acetylcysteine in Affecting Viscosity and Flow Speed
2.13. Statistical Analysis
3. Results
3.1. Size Distribution of Aerosols Emitted from the Jet Nebulizer InnoSpire
3.2. Treatment with N-Acetylcysteine (NAC)
3.3. Treatment with Bromelain (BR)
3.4. Treatment with Bromelain and Acetylcysteine (BromAc)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Viscosity (γ) Measurements (Pa·s) | ||
---|---|---|
Treatment | Artificial Sputum (AS) | Simulated Sputum (SS) |
BR 125 µg/mL + NAC 20 mg/mL | 15.833 ± 0.017 | 23.6 ± 0.550 |
BR 125 µg/mL | 16.867 ± 0.367 * | 26.867 ± 0.067 * |
NAC 20 mg/mL | 20.783 ± 0.683 * | 24.217 ± 0.917 |
BR 250 µg/mL + NAC 20 mg/mL | 13.333 ± 0.033 | 21.367 ± 0.450 |
BR 250 µg/mL | 14.50 ± 0.050 * | 26.667 ± 0.150* |
NAC 20 mg/mL | 20.783 ± 0.683 * | 24.217 ± 0.917* |
Pipette Flow Speed (ε) (mL/s) | ||
Treatment | Artificial Sputum (AS) | Simulated Sputum (SS) |
BR 125 µg/mL + NAC 20 mg/mL | 0.033 ± 0.002 | 0.061 ± 0.002 |
BR 125 µg/mL | 0.0218 ± 0.003 * | 0.046 ± 0.001 * |
NAC 20 mg/mL | 0.007 ± 0.001 * | 0.02 ± 0.002 * |
BR 250 µg/mL + NAC 20 mg/mL | 0.035 ± 0.001 | 0.114 ± 0.002 |
BR 250 µg/mL | 0.0290 ± 0.001 * | 0.073 ± 0.004 * |
NAC 20 mg/mL | 0.007 ± 0.001 * | 0.02 ± 0.002 * |
References
- Lai, S.K.; Wang, Y.Y.; Wirtz, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug. Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Cone, R.A. Barrier properties of mucus. Adv. Drug. Deliv. Rev. 2009, 61, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.K.; Ramirez, O.; Zayas, J.G.; Finegan, B.; King, M. Collection and analysis of respiratory mucus from subjects without lung disease 1–4. Am. Rev. Respir. Dis. 1990, 141, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Puchelle, E.; Zahm, J.M.; Quemada, D. Rheological properties controlling mucociliary frequency and respiratory mucus transport. Biorheology 1987, 24, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V.; Dickey, B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Randell, S.H.; Boucher, R.C. Effective mucus clearance is essential for respiratory health. Am. J. Respir. Cell Mol. Biol. 2006, 35, 20–28. [Google Scholar] [CrossRef]
- Chiappini, E.; Taccetti, G.; de Martino, M. Bacterial lung infections in cystic fibrosis patients: An update. Pediatr. Infect. Dis. J. 2014, 33, 653–654. [Google Scholar] [CrossRef]
- Meldrum, O.W.; Chotirmall, S.H. Mucus, Microbiomes and Pulmonary Disease. Biomedicines 2021, 9, 675. [Google Scholar] [CrossRef]
- Ermund, A.; Meiss, L.N.; Rodriguez-Pineiro, A.M.; Bähr, A.; Nilsson, H.E.; Trillo-Muyo, S.; Ridley, C.; Thornton, D.J.; Wine, J.J.; Hebert, H. The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin. Biochem. Biophys. Res. Commun. 2017, 492, 331–337. [Google Scholar] [CrossRef]
- Morrison, C.B.; Markovetz, M.R.; Ehre, C. Mucus, mucins, and cystic fibrosis. Pediatr. Pulmonol. 2019, 54 (Suppl. S3), S84–S96. [Google Scholar] [CrossRef]
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug. Deliv. Rev. 2018, 124, 3–15. [Google Scholar] [CrossRef]
- Andelid, K.; Ost, K.; Andersson, A.; Mohamed, E.; Jevnikar, Z.; Vanfleteren, L.; Goransson, M. Lung macrophages drive mucus production and steroid-resistant inflammation in chronic bronchitis. Respir. Res. 2021, 22, 172. [Google Scholar] [CrossRef]
- Turcios, N.L. Cystic Fibrosis Lung Disease: An Overview. Respir. Care 2020, 65, 233–251. [Google Scholar] [CrossRef]
- Munkholm, M.; Mortensen, J. Mucociliary clearance: Pathophysiological aspects. Clin. Physiol. Funct. Imaging 2014, 34, 171–177. [Google Scholar] [CrossRef]
- Tang, X.X.; Ostedgaard, L.S.; Hoegger, M.J.; Moninger, T.O.; Karp, P.H.; McMenimen, J.D.; Choudhury, B.; Varki, A.; Stoltz, D.A.; Welsh, M.J. Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J. Clin. Investig. 2016, 126, 879–891. [Google Scholar] [CrossRef]
- Matsui, H.; Verghese, M.W.; Kesimer, M.; Schwab, U.E.; Randell, S.H.; Sheehan, J.K.; Grubb, B.R.; Boucher, R.C. Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J. Immunol. 2005, 175, 1090–1099. [Google Scholar] [CrossRef]
- Kratochvil, M.J.; Kaber, G.; Cai, P.C.; Burgener, E.B.; Barlow, G.L.; Nicolls, M.R.; Ozawa, M.G.; Regula, D.P.; Pacheco-Navarro, A.E.; Milla, C.E. Biochemical and Biophysical Characterization of Respiratory Secretions in Severe SARS-CoV-2 (COVID-19) Infections. medRxiv 2021. [Google Scholar] [CrossRef]
- Wark, P.; McDonald, V.M. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst. Rev. 2018, 9, CD001506. [Google Scholar] [CrossRef]
- Conrad, C.; Lymp, J.; Thompson, V.; Dunn, C.; Davies, Z.; Chatfield, B.; Nichols, D.; Clancy, J.; Vender, R.; Egan, M. Long-term treatment with oral N-acetylcysteine: Affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. J. Cyst. Fibros. 2015, 14, 219–227. [Google Scholar] [CrossRef]
- Charrier, C.; Rodger, C.; Robertson, J.; Kowalczuk, A.; Shand, N.; Fraser-Pitt, D.; Mercer, D.; O’Neil, D. Cysteamine (Lynovex®), a novel mucoactive antimicrobial & antibiofilm agent for the treatment of cystic fibrosis. Orphanet J. Rare Dis. 2014, 9, 189. [Google Scholar]
- Barry, P.J.; Jones, A.M. New and Emerging Treatments for Cystic Fibrosis. Drugs 2015, 75, 1165–1175. [Google Scholar] [CrossRef]
- Waters, V.; Smyth, A. Cystic fibrosis microbiology: Advances in antimicrobial therapy. J. Cyst. Fibros. 2015, 14, 551–560. [Google Scholar] [CrossRef]
- Wilson, R.; Dowling, R.B.; Jackson, A.D. The biology of bacterial colonization and invasion of the respiratory mucosa. Eur. Respir. J. 1996, 9, 1523–1530. [Google Scholar] [CrossRef]
- Brosnahan, S.B.; Jonkman, A.H.; Kugler, M.C.; Munger, J.S.; Kaufman, D.A. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2586–2597. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Yu, Y.; Han, T.; Zhou, J.; Bi, L. Sputum characteristics and airway clearance methods in patients with severe COVID-19. Medicine 2020, 99, e23257. [Google Scholar] [CrossRef]
- Mekkawy, A.H.; Pillai, K.; Badar, S.; Akhter, J.; Ke, K.; Valle, S.J.; Morris, D.L. Addition of bromelain and acetylcysteine to gemcitabine potentiates tumor inhibition in vivo in human colon cancer cell line LS174T. Am. J. Cancer Res. 2021, 11, 2252–2263. [Google Scholar]
- Pillai, K.; Mekkawy, A.H.; Akhter, J.; Badar, S.; Dong, L.; Liu, A.I.; Morris, D.L. Enhancing the potency of chemotherapeutic agents by combination with bromelain and N-acetylcysteine—An in vitro study with pancreatic and hepatic cancer cells. Am. J. Transl. Res. 2020, 12, 7404–7419. [Google Scholar]
- Pillai, K.; Akhter, J.; Chua, T.C.; Morris, D.L. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. Int. J. Cancer 2014, 134, 478–486. [Google Scholar] [CrossRef]
- Valle, S.J.; Akhter, J.; Mekkawy, A.H.; Lodh, S.; Pillai, K.; Badar, S.; Glenn, D.; Power, M.; Liauw, W.; Morris, D.L. A novel treatment of bromelain and acetylcysteine (BromAc) in patients with peritoneal mucinous tumours: A phase I first in man study. Eur. J. Surg. Oncol. 2021, 47, 115–122. [Google Scholar] [CrossRef]
- Praveen, N.C.; Rajesh, A.; Madan, M.; Chaurasia, V.R.; Hiremath, N.V.; Sharma, A.M. In vitro Evaluation of Antibacterial Efficacy of Pineapple Extract (Bromelain) on Periodontal Pathogens. J. Int. Oral. Health 2014, 6, 96–98. [Google Scholar]
- Moon, J.H.; Choi, Y.S.; Lee, H.W.; Heo, J.S.; Chang, S.W.; Lee, J.Y. Antibacterial effects of N-acetylcysteine against endodontic pathogens. J. Microbiol. 2016, 54, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Lin, H.T.; Liang, T.W.; Chen, Y.J.; Yen, Y.H.; Guo, S.P. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour. Technol. 2008, 99, 4386–4393. [Google Scholar] [CrossRef] [PubMed]
- Ehre, C.; Rushton, Z.L.; Wang, B.; Hothem, L.N.; Morrison, C.B.; Fontana, N.C.; Markovetz, M.R.; Delion, M.F.; Kato, T.; Villalon, D.; et al. An Improved Inhaled Mucolytic to Treat Airway Muco-obstructive Diseases. Am. J. Respir. Crit. Care Med. 2019, 199, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef]
- Akhter, J.; Pillai, K.; Chua, T.C.; Alzarin, N.; Morris, D.L. Efficacy of a novel mucolytic agent on pseudomyxoma peritonei mucin, with potential for treatment through peritoneal catheters. Am. J. Cancer Res. 2014, 4, 495–507. [Google Scholar]
- Kirchner, S.; Fothergill, J.L.; Wright, E.A.; James, C.E.; Mowat, E.; Winstanley, C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J. Vis. Exp. JoVE 2012, 64, e3857. [Google Scholar] [CrossRef]
- Santander, J.; Castellano, G. Determination of the kinematic viscosity by the liquid rise in a capillary tube. Rev. Bras. De Ensino De Física 2013, 35, 3310. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef]
- Paranjpe, M.; Muller-Goymann, C.C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci. 2014, 15, 5852–5873. [Google Scholar] [CrossRef]
- Yang, W.; Peters, J.I.; Williams, R.O., 3rd. Inhaled nanoparticles—A current review. Int. J. Pharm. 2008, 356, 239–247. [Google Scholar] [CrossRef]
- Beedle, A.E.M.; Mora, M.; Lynham, S.; Stirnemann, G.; Garcia-Manyes, S. Tailoring protein nanomechanics with chemical reactivity. Nat. Commun. 2017, 8, 15658. [Google Scholar] [CrossRef]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free. Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef]
- Pillai, K.; Akhter, J.; Mekkawy, A.; Chua, T.C.; Morris, D.L. Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP). Int. J. Med. Sci. 2017, 14, 18–28. [Google Scholar] [CrossRef]
- Patarin, J.; Ghiringhelli, E.; Darsy, G.; Obamba, M.; Bochu, P.; Camara, B.; Quetant, S.; Cracowski, J.L.; Cracowski, C.; Robert de Saint Vincent, M. Rheological analysis of sputum from patients with chronic bronchial diseases. Sci. Rep. 2020, 10, 15685. [Google Scholar] [CrossRef]
- Ren, S.; Li, W.; Wang, L.; Shi, Y.; Cai, M.; Hao, L.; Luo, Z.; Niu, J.; Xu, W.; Luo, Z. Numerical analysis of airway mucus clearance effectiveness using assisted coughing techniques. Sci. Rep. 2020, 10, 2030. [Google Scholar] [CrossRef]
- Zhitkovich, A. N-Acetylcysteine: Antioxidant, Aldehyde Scavenger, and More. Chem. Res. Toxicol. 2019, 32, 1318–1319. [Google Scholar] [CrossRef]
ID | d10 (µm) | d50 (µm) | d90 (µm) | GSD | <10 µm (%) | <5 µm (%) | Nebulisation Time (min, s) |
---|---|---|---|---|---|---|---|
Bromelain 250 µg/mL + 20 mg/mL acetylcysteine | |||||||
Mean | 1.6 | 3.6 | 7.8 | 1.7 | 96.3 | 69.4 | 30, 19 |
Standard Deviation | 0.1 | 0.1 | 0.3 | 0 | 0.61 | 1.42 | 1.5, 10 |
Bromelain 500 µg/mL + 20 mg/mL acetylcysteine | |||||||
Mean | 1.7 | 3.5 | 7.0 | 1.7 | 98.1 | 74.2 | 30, 26 |
Standard Deviation | 0.1 | 0.1 | 0.3 | 0 | 0.46 | 2.00 | 0.6, 25 |
Bromelain 1000 µg/mL + 20 mg/mL acetylcysteine | |||||||
Mean | 1.5 | 3.5 | 7.5 | 1.8 | 96.8 | 71.9 | 30, 32 |
Standard Deviation | 0.1 | 0.2 | 0.3 | 0 | 0.40 | 2.51 | 1.2, 25 |
Viscosity (γ) Measurements (Pa·s) | ||||||
---|---|---|---|---|---|---|
Artificial Sputum (AS) | Simulated Sputum (SS) | |||||
Treatment | Before | After | D (%) | Before | After | D (%) |
Control | 23.038 ± 0.217 | 22.383 ± 0.017 | 0.65 ↓ | 29.133 ± 0.1 | 28.550 ± 0.067 | 2 ↓ |
NAC 10 mg/mL | 21.667 ± 0.033 * | 6.0 ↓ | 24.450 ± 0.017 * | 16 ↓ | ||
NAC 20 mg/mL | 20.783 ± 0.683 | 9.8 ↓ | 24.217 ± 0.917 * | 17 ↓ | ||
Pipette Flow Speed (ε) (mL/s) | ||||||
Artificial Sputum (AS) | Simulated Sputum (SS) | |||||
Treatment | Before | After | D (%) | Before | After | D (%) |
Control | 0.005 ± 0.001 | 0.006 ± 0.001 | 20 ↑ | 0.0137 ± 0.005 | 0.0153 ± 0.001 | 12 ↑ |
NAC 10 mg/mL | 0.0064 ± 0.003 | 28 ↑ | 0.0183 ± 0.001 * | 34 ↑ | ||
NAC 20 mg/mL | 0.007 ± 0.001 | 40 ↑ | 0.02 ± 0.002 * | 46 ↑ |
Viscosity (γ) Measurements (Pa·s) | ||||||
---|---|---|---|---|---|---|
Artificial Sputum (AS) | Simulated Sputum (SS) | |||||
Treatment | Before | After | D (%) | Before | After | D (%) |
Control | 23.038 ± 0.217 | 22.883 ± 0.017 | 0.65 ↓ | 29.133 ± 0.1 | 28.550 ± 0.067 | 2 ↓ |
BR 125 µg/mL | 16.867 ± 0.367 * | 27 ↓ | 26.867 ± 0.067 * | 8.0 ↓ | ||
BR 250 µg/mL | 14.50 ± 0.050 * | 36 ↓ | 26.667 ± 0.150 * | 8.5 ↓ | ||
Pipette Flow Speed (ε) (mL/s) | ||||||
Artificial Sputum (AS) | Simulated Sputum (SS) | |||||
Treatment | Before | After | D (%) | Before | After | D (%) |
Control | 0.005 ± 0.001 | 0.006 ± 0.001 | 20 ↑ | 0.0137 ± 0.005 | 0.0153 ± 0.001 | 12 ↑ |
BR 125 µg/mL | 0.0218 ± 0.003 * | 336 ↑ | 0.046 ± 0.001 * | 243 ↑ | ||
BR 250 µg/mL | 0.0290 ± 0.001 * | 480 ↑ | 0.073 ± 0.004 * | 443 ↑ |
Viscosity (γ) Measurements (Pa·s) | ||||||
---|---|---|---|---|---|---|
Artificial Sputum (AS) | Simulated Sputum (SS) | |||||
Treatment | Before | After | D (%) | Before | After | D (%) |
Control | 23.038 ± 0.217 | 22.883 ± 0.017 | 0.65 ↓ | 29.133 ± 0.1 | 28.550 ± 0.067 | 2 ↓ |
BR 125 µg/mL + NAC 20 mg/mL | 15.833 ± 0.017 * | 31 ↓ | 23.6 ± 0.550 * | 19 ↓ | ||
BR 250 µg/mL + NAC 20 mg/mL | 13.333 ± 0.033 * | 42 ↓ | 21.367 ± 0.450 * | 27 ↓ | ||
Pipette Flow Speed (ε) (mL/s) | ||||||
Artificial Sputum (AS) | Simulated Sputum (SS) | |||||
Treatment | Before | After | D (%) | Before | After | D (%) |
Control | 0.005 ± 0.001 | 0.006 ± 0.001 | 20 ↑ | 0.0137 ± 0.005 | 0.0153 ± 0.001 | 12 ↑ |
BR 125 µg/mL + NAC 20 mg/mL | 0.033 ± 0.002 * | 556 ↑ | 0.061 ± 0.002 * | 343 ↑ | ||
BR 250 µg/mL + NAC 20 mg/mL | 0.035 ± 0.001 * | 600 ↑ | 0.114 ± 0.002 * | 733 ↑ |
Artificial Sputa (AS) | Simulated Sputa (SS) | |||
---|---|---|---|---|
Reagent | BR (µg/mL) | NAC (mg/mL) | BR (µg/mL) | NAC (mg/mL) |
BR 125 µg/mL | 30.58 ± 0.211 | 57.91 ± 0.562 | ||
BR 250 µg/mL | 58.63 ± 0.89 | 61.64 ± 0.88 | ||
NAC 10 mg/mL | 2.75 ± 0.143 | 1.85 ± 0.310 | ||
NAC 20 mg/mL | 2.90 ± 0.210 | 2.367 ± 0.133 | ||
BR 125 µg/mL + NAC 20 mg/mL | 41.23 ± 1.212 | 2.41 ± 0.122 | 77.56 ± 3.12 | 1.62 ± 0.093 |
BR 250 µg/mL + NAC 20 mg/mL | 79.15 ± 2.22 | 2.22 ± 0.184 | 88.21 ± 4.11 | 2.16 ± 0.132 |
D Value (%) | ||||
---|---|---|---|---|
Artificial Sputa (AS) | Simulated Sputa (SS) | |||
Treatment | Dynamic Viscosity (γ) | Flow Speed (ε) | Dynamic Viscosity (γ) | Flow Speed (ε) |
125 µg/mL BR | 27 | 336 | 8.0 | 243 |
250 µg/mL BR | 36 | 480 | 8.2 | 443 |
125 µg/mL BR + NAC 20 mg/mL | 31 | 556 | 19 | 343 |
250 µg/mL BR + NAC 20 mg/mL | 42 | 600 | 27 | 733 |
Viscosity | Flow Speed | ||||||||
---|---|---|---|---|---|---|---|---|---|
Artificial Sputa | Simulated Sputa | Artificial Sputa | Simulated Sputa | ||||||
BR (µg/mL) | NAC (mg/mL) | CI | Effect | CI | Effect | CI | Effect | CI | Effect |
125.00 | 20.0 | 1.19 | Sub-additive | 1.31 | Sub-additive | 0.672 | Synergy | 0.846 | Synergy |
250.00 | 20.0 | 1.1 | Additive | 0.94 | Synergy | 0.866 | Synergy | 0.666 | Synergy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillai, K.; Mekkawy, A.H.; Akhter, J.; Morris, D.L. Effect of Nebulized BromAc on Rheology of Artificial Sputum: Relevance to Muco-Obstructive Respiratory Diseases. Adv. Respir. Med. 2023, 91, 146-163. https://doi.org/10.3390/arm91020013
Pillai K, Mekkawy AH, Akhter J, Morris DL. Effect of Nebulized BromAc on Rheology of Artificial Sputum: Relevance to Muco-Obstructive Respiratory Diseases. Advances in Respiratory Medicine. 2023; 91(2):146-163. https://doi.org/10.3390/arm91020013
Chicago/Turabian StylePillai, Krishna, Ahmed H. Mekkawy, Javed Akhter, and David L. Morris. 2023. "Effect of Nebulized BromAc on Rheology of Artificial Sputum: Relevance to Muco-Obstructive Respiratory Diseases" Advances in Respiratory Medicine 91, no. 2: 146-163. https://doi.org/10.3390/arm91020013
APA StylePillai, K., Mekkawy, A. H., Akhter, J., & Morris, D. L. (2023). Effect of Nebulized BromAc on Rheology of Artificial Sputum: Relevance to Muco-Obstructive Respiratory Diseases. Advances in Respiratory Medicine, 91(2), 146-163. https://doi.org/10.3390/arm91020013