Spherical Tree-Structured SOM and Its Application to Hierarchical Clustering
Abstract
:1. Introduction
- (1)
- We propose the S-TS-SOM, which applies a tree search method to the S-SOM, to speed up the search for winner nodes and eliminate the edges of the map.
- (2)
- We examine the effectiveness of the S-TS-SOM by comparing it with the S-SOM using a benchmark dataset.
- (3)
- We examine whether the granularity of clustering can be determined using the tree structure of the S-TS-SOM.
2. Materials and Methods
2.1. Related Work
2.2. S-TS-SOM
- (1)
- Train the 0th layer using the SOM algorithm.
- (2)
- Add a competitive layer.
- (3)
- Search for the winner nodes in the added layer.
- (4)
- Update the reference vectors of the added layer using the neighborhood function.
- (5)
- Repeat steps 3 to 4 a certain number of times.
- (6)
- If the number of layers is the same as a pre-determined number, the learning is finished. Otherwise, the process returns to step 2.
3. Results
3.1. Visualization Experiment
3.2. Quantitative Evaluation of Clustering
3.3. Data Clustering Utilizing the Tree Structure of the S-TS-SOM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
aardvark, bear |
antelope, buffalo, deer, elephant, giraffe, oryx |
bass, catfish, chub, herring, piranha |
boar, cheetah, leopard, lion, lynx, mongoose, polecat, puma, raccoon, wolf |
calf, goat, pony, reindeer |
chicken, dove, parakeet |
crayfish, lobster |
crow, hawk |
dogfish, pike, tuna |
dolphin, porpoise |
flea, termite |
fruitbat, vampire |
gull, skimmer, skua |
haddock, seahorse, sole |
hare, vole |
housefly, moth |
lark, pheasant, sparrow, wren |
mole, opossum |
slug, worm |
References
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 9, 78. [Google Scholar] [CrossRef]
- Cottrell, M.; Olteanu, M.; Rossi, M.; Villa-Vialaneix, N. Self-Organizing Maps, theory and applications. Rev. Investig. Oper. 2018, 39, 1–22. [Google Scholar]
- MNIST Database. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 26 June 2022).
- Honkela, T.; Lagus, K.; Kohonen, T. WEBSOM D Self-organizing maps of document collections. Neurocomputing 1998, 21, 101–107. [Google Scholar]
- Matsushita, H.; Nishio, Y. Batch-learning self-organizing map with weighted connections avoiding false-neighbor effects. In Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 18–23 July 2010. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 202. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Espadoto, M.; Martins, R.M.; Kerren, A.; Hirata, N.S.; Telea, A.C. Toward a quantitative survey of dimension reduction techniques. IEEE Trans. Vis. Comput. Graph. 2019, 27, 2153–2173. [Google Scholar] [CrossRef] [PubMed]
- Anowar, F.; Samira, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Oja, E.; Kaski, S. Kohonen Maps; Elsevier: Amsterdam, The Netherlands, 1999; pp. 121–130. [Google Scholar]
- Masahiro, I.; Tsutomu, M.; Hiroshi, M. The characteristics of the torus Self Organizing Map. In Proceedings of the of 6th International Conference on Soft Computing, San Jose, CA, USA, 11–14 October 2000. [Google Scholar]
- Wu, Y.; Takatsuka, M. Spherical self-organizing map using efficient indexed geodesic data structure. Neural Netw. 2006, 19, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, C.A.; Oommen, B.J. Topology-oriented self-organizing maps: A survey. Pattern Anal. Appl. 2014, 17, 9. [Google Scholar] [CrossRef]
- Merkl, D. Exploration of text collections with hierarchical feature maps. In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Philadelphia, PA, USA, 37–31 July 1997. [Google Scholar]
- Rauber, A.; Merkl, D.; Dittenbach, M. The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 2002, 13, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Yang, L.; Guo, K.; Ma, L.; Sun, M.; Ke, M.; Li, M. A survey on the development of self-organizing maps for unsupervised intrusion detection. Mob. Netw. Appl. 2021, 26, 808–829. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Ichimura, T.; Mackin, K.J. Adaptive learning algorithm in tree-structured self-organizing feature map. In Proceedings of the Joint 5th International Conference on Soft Computing and Intelligent Systems and 11th International Symposium on Advanced Intelligent, Okayama, Japan, 8–12 December 2010. [Google Scholar]
- Evaluation of Clustering. Available online: https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html (accessed on 26 June 2022).
- Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/zoo (accessed on 26 June 2022).
(1) S-T S-SOM | (2) S-SOM | (1)/(2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Outermost Nodes | Number of Search Nodes | Purity | NMI | Time (s) | Number of Search Nodes | Purity | NMI | Time (s) | Purity | NMI | Time (s) |
80 | 24 × 101 | 0.761 | 0.481 | 215.13 | 80 × 101 | 0.787 | 0.508 | 235.07 | 0.967 | 0.948 | 0.915 |
320 | 28 × 101 | 0.822 | 0.443 | 409.06 | 320 × 101 | 0.823 | 0.449 | 941.17 | 0.998 | 0.986 | 0.435 |
1280 | 32 × 101 | 0.864 | 0.409 | 789.74 | 1280 × 101 | 0.844 | 0.401 | 3678.23 | 1.024 | 1.020 | 0.215 |
5120 | 36 × 101 | 0.895 | 0.381 | 2011.44 | 5120 × 101 | 0.858 | 0.365 | 16,560.32 | 1.043 | 1.046 | 0.121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshioka, K.; Dozono, H. Spherical Tree-Structured SOM and Its Application to Hierarchical Clustering. Appl. Syst. Innov. 2022, 5, 76. https://doi.org/10.3390/asi5040076
Yoshioka K, Dozono H. Spherical Tree-Structured SOM and Its Application to Hierarchical Clustering. Applied System Innovation. 2022; 5(4):76. https://doi.org/10.3390/asi5040076
Chicago/Turabian StyleYoshioka, Koki, and Hiroshi Dozono. 2022. "Spherical Tree-Structured SOM and Its Application to Hierarchical Clustering" Applied System Innovation 5, no. 4: 76. https://doi.org/10.3390/asi5040076
APA StyleYoshioka, K., & Dozono, H. (2022). Spherical Tree-Structured SOM and Its Application to Hierarchical Clustering. Applied System Innovation, 5(4), 76. https://doi.org/10.3390/asi5040076