Iron (III) Oxide-Based Ceramic Material for Radiation Shielding
Abstract
:1. Introduction
2. Experimantal
2.1. Raw Material and Preparation of Ceramic Specimens
2.2. Gamma Radiation Spectroscopy of the Iron (III) Oxide Ceramic
2.3. Dosimetry of The Iron (III) Oxide Ceramic by a Low Scatter Irradiator
3. Result and Discussion
3.1. Fabrication of Novel Iron (III) Oxide-Based Brick and Analysis of its Physical Properties
3.2. Radiation Shielding Performance of the Iron (III) Oxide-Based Brick
3.3. Use of The Iron (III) Oxide-Based Brick as A Construction Material for Clinical Radiotherapy Facility
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AbuAlRoos, N.J.; Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Thoraeus, R. Attenuation of gamma radiation from 60Co, 137Cs, 192Ir, and 226Ra in various materials used in radiotherapy. Acta Radiol. 1965, 3, 81–86. [Google Scholar]
- Tajani, A.; Maasikas, M. Directive (EU) 2017/2102 of the European Parliament and of the council. Off. J. Eur. Union 2017, 32017L2102. [Google Scholar]
- Jawad, A.A.; Demirkol, N.; Akkurt, I. Radiation shielding properties of some ceramic wasted samples. Int. J. Environ. Sci. Tec. 2019, 16, 5039–5042. [Google Scholar] [CrossRef]
- Najam, L.A.; Hashim, A.K.; Ahmed, H.A.; Hassan, I.M. Study the attenuation coefficient of granite to use it as shields against gamma ray. Detection 2016, 4, 33–39. [Google Scholar] [CrossRef]
- Gokce, H.S.; Ozturk, B.C.; Cam, N.F.; Andic-Cakir, O. Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture. Cem. Concr. Compos. 2018, 92, 56–59. [Google Scholar] [CrossRef]
- Sarai, H.; Kudo, K.; Inaba, S.; Honma, T. Development of heat-stored brick from ironstone. Reports of the Hokkaido Industrial Research Institute 1999, 298, 69–75. (In Japanese) [Google Scholar]
- Lee, W.E.; Rainforth, W.M. Ceramic Microstructures: Property Control by Processing. Springer Science & Business Media: Berlin/Heidelberg, Germany, 1994; pp. 39–40. ISBN 0-412-43140-8. [Google Scholar]
- Mortazavi, S.M.J.; Moseleh-Shirazi, M.A.; Roshan-Shmal, P.; Raapey, N.; Baradran-Ghahfarokhi, M. High-performance heavy concrete as a multi-purpose shield. Radiat. Prot. Dosim. 2010, 142, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.; Nakamura, T. Consideration to shielding design Ccalculation of radiation oncology electron linac facility whose energy is greater than 10MeV. Radioisotopes 2008, 57, 277–286. [Google Scholar] [CrossRef]
H2O/mass % | Ig. Loss/mass % | Fe2O3/mass % | ClSO4/mass % | MnO/mass % | SiO2/mass % | CaO/mass % |
---|---|---|---|---|---|---|
0.06 | 0.17 | 99.08 | 0.054 | 0.52 | 0.019 | 0.012 |
Physical Property | Typical Value |
---|---|
Specific gravity | 4.9 |
Apparent porosity | 1.0% |
Cold compressive strength | 200 MPa (2000 kg f/cm2) |
Modulus of rupture | 20 MPa (200 kg f/cm2) |
Thermal conductivity | 4.26 W/(m K) |
Coefficient of linear expansion | 1.14% (1000 °C) |
Refractoriness | SK26 |
Thickness of Sample (cm) | Raw Counts and the Calculated Linear Attenuation Coefficients | ||
---|---|---|---|
1332 keV (60Co) | 1173 keV (60Co) | 662 keV (137Cs) | |
0 | 4.11 × 103 | 4.63 × 103 | 3.02 × 105 |
2.0 | 2.34 × 103 (0.282) * | 2.62 × 103 (0.285) | 1.44 × 105 (0.370) |
3.0 | 1.82 × 103 (0.272) | 1.97 × 103 (0.285) | 9.86 × 104 (0.373) |
4.0 | 1.49 × 103 (0.254) | 1.56 × 103 (0.272) | 7.30 × 104 (0.349) |
5.0 | 1.11 × 103 (0.262) | 1.18 × 103 (0.273) | 4.91 × 104 (0.329) |
Material | Thickness (cm) | 60Co (mSv/h) | 137Cs (mSv/h) | 232Cf (mSv/h) |
---|---|---|---|---|
Bare | 0 | 3.5 | 43.5 | 1.55 |
Fe2O3 based ceramic | 2.0 | 2.5 | 29 | 2.4 |
Fe2O3 based ceramic | 3.0 | 2.1 | 22.5 | 2.2 |
Fe2O3 based ceramic | 4.0 | 1.7 | 17.5 | 2.0 |
Fe2O3 based ceramic | 5.0 | 1.4 | 13.9 | 1.7 |
Stainless steel | 5.08 | 0.7 | 5.0 | 1.05 |
Lead | 5.08 | 0.2 | 0.7 | 1.35 |
Concrete | 4.75 | 2.4 | 27.0 | 1.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, H.; Oku, Y.; Mannami, Y.; Kunisada, T. Iron (III) Oxide-Based Ceramic Material for Radiation Shielding. Ceramics 2020, 3, 258-264. https://doi.org/10.3390/ceramics3020023
Mori H, Oku Y, Mannami Y, Kunisada T. Iron (III) Oxide-Based Ceramic Material for Radiation Shielding. Ceramics. 2020; 3(2):258-264. https://doi.org/10.3390/ceramics3020023
Chicago/Turabian StyleMori, Hiroyuki, Yohei Oku, Yudo Mannami, and Takahiro Kunisada. 2020. "Iron (III) Oxide-Based Ceramic Material for Radiation Shielding" Ceramics 3, no. 2: 258-264. https://doi.org/10.3390/ceramics3020023
APA StyleMori, H., Oku, Y., Mannami, Y., & Kunisada, T. (2020). Iron (III) Oxide-Based Ceramic Material for Radiation Shielding. Ceramics, 3(2), 258-264. https://doi.org/10.3390/ceramics3020023