Journal Description
Ceramics
Ceramics
is an international, peer-reviewed, open access journal of ceramics science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), and other databases.
- Journal Rank: JCR - Q2 (Materials Science, Ceramics) / CiteScore - Q2 (Materials Science (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.6 days after submission; acceptance to publication is undertaken in 3.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.0 (2024);
5-Year Impact Factor:
2.3 (2024)
Latest Articles
ZIF-8 as a Drug Delivery System (DDS) for Hesperidin: Synthesis, Characterization, and In Vitro Release Profile
Ceramics 2025, 8(3), 113; https://doi.org/10.3390/ceramics8030113 - 11 Sep 2025
Abstract
Metal–organic frameworks (MOFs) are promising materials for drug delivery due to their structural tunability and high surface area. This work reports on the synthesis of ZIF-8 for the in situ encapsulation of hesperidin, a flavonoid with poor water solubility used in the treatment
[...] Read more.
Metal–organic frameworks (MOFs) are promising materials for drug delivery due to their structural tunability and high surface area. This work reports on the synthesis of ZIF-8 for the in situ encapsulation of hesperidin, a flavonoid with poor water solubility used in the treatment of circulatory system disorders, as a gastric-targeted drug delivery system (DDS). A 23 full factorial design was used to optimize drug loading, investigating the effects of DMSO concentration, 2-MIm/Zn2+ molar ratio, and final solution volume (water content). The materials were characterized by ATR-FT-IR, TG, XRD, and SEM analyses, confirming successful ZIF-8 synthesis and partial hesperidin encapsulation. Drug release kinetics were evaluated at pH 1.0 and 6.86. The system showed a faster and more pronounced release at pH 1.0, driven by MOF degradation, demonstrating its potential as a gastric-targeted DDS. This study confirms the feasibility of ZIF-8 to improve hesperidin solubility and bioavailability, highlighting a novel strategy for its therapeutic application.
Full article
(This article belongs to the Special Issue Ceramics Containing Active Molecules for Biomedical Applications)
►
Show Figures
Open AccessArticle
Luminescence of (YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce Radiation-Synthesized Ceramics
by
Aida Tulegenova, Victor Lisitsyn, Gulnur Nogaibekova, Renata Nemkayeva and Aiymkul Markhabayeva
Ceramics 2025, 8(3), 112; https://doi.org/10.3390/ceramics8030112 - 5 Sep 2025
Abstract
►▼
Show Figures
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the
[...] Read more.
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the corresponding oxide components. Five-component ceramics were obtained from oxide powders of Y2O3, Lu2O3, Gd2O3, Al2O3, Ga2O3, and Ce2O3 in less than 1 s, without the use of any additional reagents or process stimulants. The average productivity of the synthesis process was approximately 5 g/s. The reaction yield, defined as the mass ratio of the synthesized ceramic to the initial mixture, ranged from 94% to 99%. The synthesized ceramics exhibit photoluminescence when excited by radiation in the 340–450 nm spectral range. The position of the luminescence bands depends on the specific composition, with the emission maxima located within the 525–560 nm range. It is suggested that under high radiation power density, the element exchange rate between the particles of the initial materials is governed by the formation of an ion–electron plasma.
Full article

Figure 1
Open AccessArticle
Effect of Fe2O3 on Compressive Strength and Microstructure of Porous Acicular Mullite
by
Mia Omerašević, Miomir Krsmanović, Nada Adamović, Chang-An Wang and Dušan Bučevac
Ceramics 2025, 8(3), 111; https://doi.org/10.3390/ceramics8030111 - 5 Sep 2025
Abstract
Porous acicular mullite was fabricated at 1300 °C starting from Al2O3 and mixture of SiO2 and MoO3 obtained by previous oxidation of waste MoSi2. It was found that the presence of MoO3 favors formation of
[...] Read more.
Porous acicular mullite was fabricated at 1300 °C starting from Al2O3 and mixture of SiO2 and MoO3 obtained by previous oxidation of waste MoSi2. It was found that the presence of MoO3 favors formation of acicular (prism-like) mullite grains with sharp edges. The effect of addition of Fe2O3 (4–12 wt.%) on phase composition, compressive strength, thermal conductivity and microstructure was studied. The addition of Fe2O3 improved the compressive strength from approximately 25 MPa in pure mullite to about 76 MPa in samples containing 12 wt.% Fe2O3, while the open porosity decreased from 55.4% to 51.8%. The presence of Fe2O3 caused a decrease in mullite formation temperature owing to the formation of liquid phase and accelerated diffusion. The solubility of iron oxide in mullite lattice was between 8 and 12 wt.% Fe2O3. The incorporated iron ions also promoted the rounding of sharp edges in prismatic mullite grains, leading to a reduced specific surface area of 0.55 m2/g in the sample with 12 wt.% Fe2O3. The thermal conductivity of mullite increased with addition of 12 wt.% Fe2O3 reaching value of 1.17 W/m·K.
Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
►▼
Show Figures

Figure 1
Open AccessArticle
Room Temperature Surfactant-Free Synthesis of Cobalt-Doped CaMoO4 Nanoparticles: Structural and Microstructural Insights
by
Said Abidi and Mohamed Benchikhi
Ceramics 2025, 8(3), 110; https://doi.org/10.3390/ceramics8030110 - 31 Aug 2025
Abstract
►▼
Show Figures
This study reports the successful synthesis of pure cobalt-substituted calcium molybdate powders (Co-doped CaMoO4) through a co-precipitation method conducted at room temperature, without the use of surfactants or hazardous organic solvents. The formation of solid solutions with x values ranging from
[...] Read more.
This study reports the successful synthesis of pure cobalt-substituted calcium molybdate powders (Co-doped CaMoO4) through a co-precipitation method conducted at room temperature, without the use of surfactants or hazardous organic solvents. The formation of solid solutions with x values ranging from 0.00 to 0.08 was confirmed by X-ray diffraction, Rietveld refinement, and Raman spectroscopy analyses. Elemental analysis using energy-dispersive X-ray spectroscopy showed a strong correlation between the experimental and nominal stoichiometries. The synthesized molybdate powders consist of micrometer-sized particles exhibiting diverse morphologies, including microspheres, flower-like architectures, and dumbbell-shaped particles. These agglomerates are composed of primary particles smaller than 43 nm. The specific surface area increased from 3.59 m2/g for the undoped CaMoO4 to 10.74 m2/g for the 6% Co-doped CaMoO4. These nanostructured powders represent promising host materials for 4f ions, making them potential candidates for solid-state lighting applications.
Full article

Figure 1
Open AccessArticle
Life Cycle Assessment of Industrial Glass Cullet Recycling Process Based on Alkaline Activation
by
Elena Battiston, Francesco Carollo, Giulia Tameni, Enrico Bernardo and Anna Mazzi
Ceramics 2025, 8(3), 109; https://doi.org/10.3390/ceramics8030109 - 29 Aug 2025
Abstract
To mitigate the issue of accumulating glass waste, an advanced process has been developed for the production of glass foams via alkaline activation, employing industrial glass cullet as the primary raw material. This method contributes to circular economy strategies by enabling high-value upcycling
[...] Read more.
To mitigate the issue of accumulating glass waste, an advanced process has been developed for the production of glass foams via alkaline activation, employing industrial glass cullet as the primary raw material. This method contributes to circular economy strategies by enabling high-value upcycling of secondary raw materials. The aim of the study is to conduct an environmental assessment of this recycling process using the Life Cycle Assessment (LCA). The analysis is performed with SimaPro software, adopting the ReCiPe impact assessment method, which allows for the quantification of 18 impact categories. Four distinct foaming processes were compared to determine the most environmentally preferable option and a sensitivity analysis was conducted to assess how variations in energy sources influence the environmental performance. The findings indicate that the scenario involving hardening at 40 °C for seven days results in the highest environmental burdens. Specifically, in the Human Carcinogenic Toxicity category, the normalized impacts for this process are approximately an order of magnitude greater. Electricity consumption is identified as the primary contributor to the overall impact. The sensitivity analysis underscores that utilizing photovoltaic panels reduces impacts. Future developments will focus on expanding the system boundaries to provide a more comprehensive understanding and supporting informed decision-making.
Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
►▼
Show Figures

Figure 1
Open AccessReview
Alkali Activation of Glass for Sustainable Upcycling: An Overview
by
Giulia Tameni and Enrico Bernardo
Ceramics 2025, 8(3), 108; https://doi.org/10.3390/ceramics8030108 - 27 Aug 2025
Abstract
The recycling of glass presently poses several challenges, predominantly to the heterogeneous chemical compositions of various glass types, along with the waste glass particle size distribution, both of which critically influence the efficiency and feasibility of recycling operations. Numerous studies have elucidated the
[...] Read more.
The recycling of glass presently poses several challenges, predominantly to the heterogeneous chemical compositions of various glass types, along with the waste glass particle size distribution, both of which critically influence the efficiency and feasibility of recycling operations. Numerous studies have elucidated the potential of converting non-recyclable glass waste into valuable materials thanks to the up-cycling strategies, including stoneware, glass wool fibres, glass foams, glass-ceramics, and geopolymers. Among the promising alternatives for improving waste valorisation of glass, alkali-activated materials (AAMs) emerge as a solution. Waste glasses can be employed both as aggregates and as precursors, with a focus on its application as the sole raw material for synthesis. This overview systematically explores the optimisation of precursor selection from a sustainability standpoint, specifically addressing the mild alkali activation process (<3 mol/L) of waste glasses. The molecular mechanisms governing the hardening process associated with this emerging class of materials are elucidated. Formulating sustainable approaches for the valorisation of glass waste is becoming increasingly critical in response to the rising quantities of non-recyclable glass and growing priority on circular economy principles. In addition, the paper highlights the innovative prospects of alkali-activated materials derived from waste glass, emphasising their emerging roles beyond conventional structural applications. Environmentally relevant applications for alkali-activated materials are reported, including the adsorption of dyes and heavy metals, immobilisation of nuclear waste, and an innovative technique for hardening as microwave-assisted processing.
Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
►▼
Show Figures

Figure 1
Open AccessReview
Ceramics—The Forgotten but Essential Ingredients for a Circular Economy on the Moon
by
Alex Ellery
Ceramics 2025, 8(3), 107; https://doi.org/10.3390/ceramics8030107 - 22 Aug 2025
Abstract
Settlement on the Moon will require full exploitation of its resources if such settlements are to be permanent. Such in situ resource utilisation (ISRU) has primarily been focused on accessing water ice at the lunar poles and the use of raw lunar regolith
[...] Read more.
Settlement on the Moon will require full exploitation of its resources if such settlements are to be permanent. Such in situ resource utilisation (ISRU) has primarily been focused on accessing water ice at the lunar poles and the use of raw lunar regolith as a compressive building material. Some work has also examined the extraction of metals, but there has been little consideration of the many useful ceramics that can be extracted from the Moon and how they may be fabricated. We introduce a strategy for full lunar industrialisation based on a circular lunar industrial ecology and examine the contribution of ceramics. We review ceramic fabrication methods but focus primarily on 3D printing approaches. The popular direct ink writing method is less suitable for the Moon and other methods require polymers which are scarce on the Moon. This turns out to be crucial, suggesting that full industrialisation of the Moon cannot be completed until the problem of ceramic fabrication is resolved, most likely in conjunction with polymer synthesis from potential carbon sources.
Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Silicon-Based Solar Brick for Textile Ceramic Technology
by
P. Casariego, V. Sarrablo, R. Barrientos and S. Santamaria-Fernandez
Ceramics 2025, 8(3), 106; https://doi.org/10.3390/ceramics8030106 - 15 Aug 2025
Abstract
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of
[...] Read more.
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of silicon photovoltaic (PV) modules into TCT to develop an industrialized Building-Integrated Photovoltaics (BIPV) system that maintains energy efficiency and visual coherence. Three full-scale solar brick prototypes are presented, detailing design objectives, experimental results, and conclusions. The first prototype demonstrated the feasibility of scaling small silicon PV units with good efficiency but limited aesthetic integration. The second embedded PV cells within ceramic bricks, improving aesthetics while maintaining electrical performance. Durability tests—including humidity, temperature cycling, wind, and hail impact—confirmed system stability, though structural reinforcement is needed for impact resistance. The third prototype outlines future work focusing on modularity and industrial scalability. Results confirm the technical viability of silicon PV integration in TCT, enabling active façades that generate renewable energy without compromising architectural freedom or aesthetics. This research advances industrialized, sustainable building envelopes that reduce environmental impact through distributed energy generation.
Full article
(This article belongs to the Special Issue New Horizons in Ceramic Processing and Manufacturing: Celebrating the Institute for Manufacturing Technologies of Ceramic Components and Composites of the University of Stuttgart)
►▼
Show Figures

Figure 1
Open AccessArticle
Laser-Based Powder Bed Fusion of Copper Powder on Aluminum Nitride Ceramics for Power Electronic Applications
by
Daniel Utsch, Timo Turowski, Christoph Hecht, Nils Thielen, Manuela Ockel, Jörg Franke and Florian Risch
Ceramics 2025, 8(3), 105; https://doi.org/10.3390/ceramics8030105 - 13 Aug 2025
Abstract
As power electronic modules are increasingly required to provide improved heat dissipation, aluminum nitride (AlN) stands out against other ceramic materials. At the same time, more cost-efficient production of customized products demands shorter development cycles and innovative manufacturing processes. Conventional process chains in
[...] Read more.
As power electronic modules are increasingly required to provide improved heat dissipation, aluminum nitride (AlN) stands out against other ceramic materials. At the same time, more cost-efficient production of customized products demands shorter development cycles and innovative manufacturing processes. Conventional process chains in power electronics are usually long and inflexible; thus, innovative ways to reduce process steps and faster prototyping are needed. Therefore, this study investigates the usage of additive manufacturing technology—laser-based powder bed fusion of metal powder (PBF-LB/M)—namely copper (Cu), on AlN substrates for power electronic applications. It is found that specific electrical conductivity values can be achieved up to 31 MS/m, and adhesion measured by shear testing reaches 15 MPa. In reliability testing, the newly produced samples exhibit a 25% decrease in adhesion after 250 cycles, which is comparatively moderate. This study shows the feasibility of PBF-LB/M of Cu powder on AlN, emphasizing its strengths and highlighting remaining weaknesses.
Full article
(This article belongs to the Special Issue New Horizons in Ceramic Processing and Manufacturing: Celebrating the Institute for Manufacturing Technologies of Ceramic Components and Composites of the University of Stuttgart)
►▼
Show Figures

Figure 1
Open AccessArticle
Mechanical Performance of Concrete with Graphene-Oxide-Treated Recycled Coarse Ceramic Aggregates: Effects on Aggregate Water Absorption and Workability
by
Andrea Antolín-Rodríguez, Andrés Juan-Valdés, Manuel Ignacio Guerra-Romero, Julia María Morán-del Pozo, Rafal Krzywon, Pagona-Noni Maravelaki and Julia García-González
Ceramics 2025, 8(3), 104; https://doi.org/10.3390/ceramics8030104 - 8 Aug 2025
Abstract
The replacement of natural aggregates with recycled aggregates in concrete production has gained attention as a sustainable approach for valorizing construction and demolition waste (CDW). Although regulatory frameworks in this area remain underdeveloped, extensive research has demonstrated that acceptable mechanical and durability properties
[...] Read more.
The replacement of natural aggregates with recycled aggregates in concrete production has gained attention as a sustainable approach for valorizing construction and demolition waste (CDW). Although regulatory frameworks in this area remain underdeveloped, extensive research has demonstrated that acceptable mechanical and durability properties can be achieved. However, the elevated water absorption associated with recycled materials—mainly due to residual attached mortar and increased porosity—continues to pose a challenge. When used without prior treatment, these particles absorb part of the mixing water intended for cement hydration, potentially compromising both fresh and hardened concrete performance. This study explores the use of graphene oxide (GO) nanocoating as a surface modification strategy to mitigate water absorption. Absorption test were performed to evaluate the effectiveness of the treatment, followed by the preparation of multiple concrete mixes incorporating varying substitution rates of natural aggregate with untreated and GO-treated recycled material. The mixtures were assessed for workability and compressive strength. Results indicate that GO nanocoating substantially reduces water (up to 30%) uptake and improves the overall performance of concrete containing recycled constituents, increasing its compressive strength by up to 32%, highlighting its potential as a viable pretreatment for sustainable concrete production.
Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
►▼
Show Figures

Figure 1
Open AccessArticle
Design and Analysis of Thermistors in Low Temperature Cofired Ceramics
by
Camilla Kärnfelt and Maïna Sinou
Ceramics 2025, 8(3), 103; https://doi.org/10.3390/ceramics8030103 - 7 Aug 2025
Abstract
In this work we investigate the integration possibility of a thermistor paste from ESL (ElectroScience Laboratory, now Vibrantz) to see if it is adapted for Vibrantz Low Temperature Cofired Ceramics (LTCC) L8 and A6M-E materials. An alumina-based sample is used as a reference
[...] Read more.
In this work we investigate the integration possibility of a thermistor paste from ESL (ElectroScience Laboratory, now Vibrantz) to see if it is adapted for Vibrantz Low Temperature Cofired Ceramics (LTCC) L8 and A6M-E materials. An alumina-based sample is used as a reference circuit throughout this study. Square, two-squares-in-parallel and two-squares-in-series thermistors are tested, placed internally and externally. Resistive values are measured in a range from 25 °C to 300 °C. The variation in the resistive values among similar thermistors is significant, with a maximum standard deviation of 67%. However, in all cases, there is a positive linear relationship between resistance and temperature. The Temperature Coefficient of Resistance (TCR) value is calculated before and after annealing. In general, the L8 and Al2O3 samples exhibit higher TCR values than the A6M-E sample. Additionally, when placed internally, the TCR value decreases approximately 30% for both tested LTCC materials. An Energy-Dispersive X-ray Spectroscopy (EDX) material analysis has also been conducted on the samples, revealing that the main chemical components are oxide, silicon, calcium, and ruthenium but also some barium and titanium, which indicates SiO2, TiO2, BaTiO3 and RuO2 oxides in the thermistor paste. The possibility to implement thermistors internally and externally on Vibrantz LTCC without delamination problems is endorsed by this study.
Full article
(This article belongs to the Special Issue New Horizons in Ceramic Processing and Manufacturing: Celebrating the Institute for Manufacturing Technologies of Ceramic Components and Composites of the University of Stuttgart)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction
by
Waleed M. Alamier, Emad M. El-Telbani, Imam Saheb Syed and Ayyob M. Bakry
Ceramics 2025, 8(3), 102; https://doi.org/10.3390/ceramics8030102 - 6 Aug 2025
Abstract
►▼
Show Figures
This study introduces an efficient and sustainable catalytic system utilizing cobalt ferrite nanoparticles (CoFe2O4-NPs) for the synthesis of valuable 6-amino-2-oxo-4-phenyl (or 4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Recognizing the limitations of traditional methods for the Biginelli reaction, we thoroughly characterized CoFe2O
[...] Read more.
This study introduces an efficient and sustainable catalytic system utilizing cobalt ferrite nanoparticles (CoFe2O4-NPs) for the synthesis of valuable 6-amino-2-oxo-4-phenyl (or 4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Recognizing the limitations of traditional methods for the Biginelli reaction, we thoroughly characterized CoFe2O4-NPs, alongside individual iron oxide nanoparticles (Fe2O3-NPs) and cobalt oxide nanoparticles (CoO-NPs), using FTIR, XRD, TEM, SEM, XPS, TGA, and BET analysis. These characterizations revealed the unique structural, morphological, and physicochemical properties of CoFe2O4-NPs, including an optimized porous structure and significant bimetallic synergy between Fe and Co ions. Catalytic studies demonstrated that CoFe2O4-NPs significantly outperformed individual Fe2O3-NPs and CoO-NPs under mild conditions. While the latter only catalyzed the Knoevenagel condensation, CoFe2O4-NPs uniquely facilitated the complete Biginelli reaction. This superior performance is attributed to the synergistic electronic environment within CoFe2O4-NPs, which enhances reactant activation, intermediate stabilization, and proton transfer during the multi-step reaction. This work highlights the potential of CoFe2O4-NPs as highly efficient and selective nanocatalysts for synthesizing biologically relevant 1,2,3,4-tetrahydropyrimidines, offering a greener synthetic route in organic chemistry.
Full article

Figure 1
Open AccessArticle
The Effect of Frankincense and Myrrh on the Sealing Ability and Hardness of Glass Ionomer Cement
by
Hala Hanna, Nsar Azeez, Diyar Khalid Bakr and Media Saeed
Ceramics 2025, 8(3), 101; https://doi.org/10.3390/ceramics8030101 - 6 Aug 2025
Abstract
►▼
Show Figures
Efforts to enhance the mechanical and physicochemical properties of conventional glass ionomer cement (GIC) are ongoing. This study aimed to evaluate the effect of incorporating varying concentrations of frankincense and myrrh liquids into conventional GIC on its microhardness and sealing ability. Frankincense and
[...] Read more.
Efforts to enhance the mechanical and physicochemical properties of conventional glass ionomer cement (GIC) are ongoing. This study aimed to evaluate the effect of incorporating varying concentrations of frankincense and myrrh liquids into conventional GIC on its microhardness and sealing ability. Frankincense and myrrh liquids were prepared by dissolving 25 g of each ground resin in 50 mL of distilled water at 60 °C and allowing the solutions to stand for 8 h. Five experimental groups were evaluated: Group A (conventional GIC), Group B (15% frankincense-modified GIC), Group C (25% frankincense-modified GIC), Group D (15% myrrh-modified GIC), and Group E (25% myrrh-modified GIC). Microhardness was evaluated using a Vickers hardness tester, and sealing ability was evaluated via interfacial gap measurements using scanning electron microscopy (SEM). SEM analysis revealed that all modified GIC groups exhibited significantly smaller interfacial gap sizes (Groups B–E: 6.1, 5.22, 5.9, and 5.34 µm, respectively) compared to conventional GIC (Group A: 6.88 µm). However, there were no statistically significant differences in microhardness among the groups (p > 0.5). The incorporation of 15% and 25% concentrations of frankincense or myrrh liquids into conventional GIC significantly improved sealing ability without compromising hardness.
Full article

Figure 1
Open AccessReview
A Brief Review of Atomistic Studies on BaTiO3 as a Photocatalyst for Solar Water Splitting
by
Aisulu U. Abuova, Ulzhan Zh. Tolegen, Talgat M. Inerbaev, Mirat Karibayev, Balzhan M. Satanova, Fatima U. Abuova and Anatoli I. Popov
Ceramics 2025, 8(3), 100; https://doi.org/10.3390/ceramics8030100 - 4 Aug 2025
Abstract
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role
[...] Read more.
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role of density functional theory (DFT), ab initio molecular dynamics (MD), and classical all-atom MD in exploring its photocatalytic behavior, in line with various experimental findings. DFT studies have offered valuable insights into the electronic structure, density of state, optical properties, bandgap engineering, and other features of BaTiO3, while MD simulations have enabled dynamic understanding of water-splitting mechanisms at finite temperatures. Experimental studies demonstrate photocatalytic water decomposition and certain modifications, often accompanied by schematic diagrams illustrating the principles. This review discusses the impact of doping, surface modifications, and defect engineering on enhancing charge separation and reaction kinetics. Key findings from recent computational works are summarized, offering a deeper understanding of BaTiO3’s photocatalytic activity. This study underscores the significance of advanced multiscale simulation techniques for optimizing BaTiO3 for solar water splitting and provides perspectives on future research in developing high-performance photocatalytic materials.
Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
The Influence of Accumulated Radiolysis Products on the Mechanisms of High-Temperature Degradation of Two-Component Lithium-Containing Ceramics
by
Inesh E. Kenzhina, Saulet Askerbekov, Artem L. Kozlovskiy, Aktolkyn Tolenova, Sergei Piskunov and Anatoli I. Popov
Ceramics 2025, 8(3), 99; https://doi.org/10.3390/ceramics8030099 - 3 Aug 2025
Abstract
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type,
[...] Read more.
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, which is not possible with methods such as X-ray diffraction or scanning electron microscopy. Based on the data obtained, the role of variation in the ratio of components in Li4SiO4–Li2TiO3 ceramics on the processes of softening under high-dose irradiation with protons simulating the accumulation of hydrogen in the damaged layer, as well as the concentration of structural defects in the form of oxygen vacancies and radiolysis products on the processes of high-temperature degradation of ceramics, was determined. It was found that the main changes in the defect structure during the prolonged thermal exposure of irradiated samples are associated with the accumulation of oxygen vacancies, the density of which was estimated by the change in the intensity of singlet lithium, characterizing the presence of E-centers. At the same time, it was found that the formation of interphase boundaries in the structure of Li4SiO4–Li2TiO3 ceramics leads to the inhibition of high-temperature degradation processes in the case of post-radiation thermal exposure for a long time. Also, during the conducted studies, the role of thermal effects on the structural damage accumulation rate in Li4SiO4–Li2TiO3 ceramics was determined in the case when irradiation is carried out at different temperatures. During the experiments, it was determined that the main contribution of thermal action in the process of proton irradiation at a fluence of 5 × 1017 proton/cm2 is an increase in the concentration of radiolysis products, described by changes in the intensities of spectral maxima, characterized by the presence of defects such as ≡Si–O, SiO43− and Ti3+ defects.
Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
►▼
Show Figures

Figure 1
Open AccessEditorial
Recent Technological Advances in Transparent Ceramics
by
Yiquan Wu
Ceramics 2025, 8(3), 98; https://doi.org/10.3390/ceramics8030098 - 1 Aug 2025
Abstract
Transparent and translucent ceramics (TCs) represent a relatively recent development in the long history of ceramics—while silicate ceramics have existed for approximately 30,000 years, transparent ceramics have been developed only within the past 65 years [...]
Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
►▼
Show Figures

Figure 1
Open AccessArticle
Dry Machining of AISI 316 Steel Using Textured Ceramic Tool Inserts: Investigation of Surface Roughness and Chip Morphology
by
Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 97; https://doi.org/10.3390/ceramics8030097 - 31 Jul 2025
Abstract
►▼
Show Figures
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of
[...] Read more.
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of stainless steel results in poor heat distribution, accelerating tool wear and problematic chip formation. To mitigate these challenges, the implementation of surface texturing has been identified as a beneficial strategy. This study investigates the impact of wave-type texturing patterns, developed on the flank surface of tungsten carbide ceramic tool inserts, on the machinability of AISI 316 stainless steel under dry cutting conditions. In this investigation, chip morphology and surface roughness were used as key indicators of machinability. Analysis of Variance (ANOVA) was conducted for chip thickness, chip thickness ratio, and surface roughness, while Taguchi mono-objective optimization was applied to chip thickness. The ANOVA results showed that linear models accounted for 71.92%, 83.13%, and 82.86% of the variability in chip thickness, chip thickness ratio, and surface roughness, respectively, indicating a strong fit to the experimental data. Microscopic analysis confirmed a substantial reduction in chip thickness, with a minimum observed value of 457.64 µm. The corresponding average surface roughness Ra value 1.645 µm represented the best finish across all experimental runs, highlighting the relationship between thinner chips and enhanced surface quality. In conclusion, wave textures on the cutting tool’s flank face have the potential to facilitate the dry machining of AISI 316 stainless steel to obtain favorable machinability.
Full article

Graphical abstract
Open AccessArticle
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by
Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 - 31 Jul 2025
Abstract
►▼
Show Figures
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable
[...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications.
Full article

Figure 1
Open AccessArticle
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by
Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 - 31 Jul 2025
Abstract
►▼
Show Figures
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of
[...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance.
Full article

Figure 1
Open AccessReview
Effects of Photobiomodulation in Association with Biomaterials on the Process of Guided Bone Regeneration: An Integrative Review
by
Matheus Bento Medeiros Moscatel, Bruna Trazzi Pagani, Beatriz Flávia de Moraes Trazzi, Carlos Henrique Bertoni Reis, Camila Aparecida Ribeiro, Daniela Vieira Buchaim and Rogerio Leone Buchaim
Ceramics 2025, 8(3), 94; https://doi.org/10.3390/ceramics8030094 - 24 Jul 2025
Abstract
►▼
Show Figures
Photobiomodulation (PBM) has been widely studied for its regenerative and anti-inflammatory properties. Its application, combined with biomaterials, is emerging as a promising strategy for promoting tissue regeneration. Considering the diversity of available evidence, this study conducted an integrative literature review, aiming to critically
[...] Read more.
Photobiomodulation (PBM) has been widely studied for its regenerative and anti-inflammatory properties. Its application, combined with biomaterials, is emerging as a promising strategy for promoting tissue regeneration. Considering the diversity of available evidence, this study conducted an integrative literature review, aiming to critically analyze and synthesize the effects of PBM on bone tissue, particularly its potential role as an adjunct in guided bone regeneration (GBR) procedures. To ensure an integrative approach, studies with different methodological designs were included, encompassing both preclinical and clinical research. The article search was performed in the digital databases PubMed/MEDLINE, Scopus, and Web of Science, using the following search terms: “Photobiomodulation therapy” AND “guided bone regeneration”. The search was conducted from November 2024 to January 2025. A total of 85 articles were found using the presented terms; after checking the results, 11 articles were selected for this study. The remaining articles were excluded because they did not fit the proposed inclusion and exclusion criteria. Studies to date have shown preclinical models that demonstrated increased bone-volume fraction and accelerating healing. Although it has exciting potential in bone regeneration, offering a non-invasive and promising approach to promote healing and repair of damaged bone tissue, the clinical application of PBM faces challenges, such as the lack of consensus on the ideal treatment parameters. Calcium phosphate ceramics were one of the most used biomaterials in the studied associations. Further well-designed studies are necessary to clarify the effectiveness, optimal parameters, and clinical relevance of PBM in bone regeneration, in order to strengthen the current evidence base and guide its potential future use in clinical practice.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Materials, Ceramics, J. Compos. Sci.
New Advances in High-Performance Structural Ceramics and Their Composites
Topic Editors: Amparo Borrell, Rut Benavente, Rujie HeDeadline: 31 March 2026
Topic in
Applied Nano, Ceramics, Crystals, Energies, Materials
High Performance Ceramic Functional Materials
Topic Editors: Letao Yang, Hua Hao, Qinghu Guo, Zhonghua YaoDeadline: 1 June 2026
Topic in
Applied Sciences, Ceramics, Polymers, Sustainable Chemistry, Buildings, Construction Materials, Materials
Research in Sustainable and Alternative Construction and Building Materials
Topic Editors: Jessica Giró Paloma, Joan Formosa MitjansDeadline: 30 September 2026

Special Issues
Special Issue in
Ceramics
Ceramics Containing Active Molecules for Biomedical Applications
Guest Editors: Pedro Faia, Evando Santos AraújoDeadline: 31 October 2025
Special Issue in
Ceramics
The Production Processes and Applications of Geopolymers, 2nd Edition
Guest Editors: Kinga Korniejenko, Katarzyna Łoś, Aleksandar NikolovDeadline: 15 November 2025
Special Issue in
Ceramics
Ceramic Materials for Industrial Decarbonization
Guest Editors: James G. Hemrick, Edgar Lara-CurzioDeadline: 30 November 2025
Special Issue in
Ceramics
Hybrid Materials for Biomedical Applications
Guest Editor: Russell GiordanoDeadline: 30 November 2025