Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Morvan, D. Physical phenomena and length scales governing the behaviour of wildfires: A case for physical modelling. Fire Technol. 2011, 47, 437–460. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Canfield, J.; Linn, R.R.; Mell, W.; Sieg, C.H.; Pimont, F.; Ziegler, J. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 2016, 52, 221–237. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service Research Paper INT-115; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972. [Google Scholar]
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. Prediction of fire spread in grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning Douglas fir trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Linn, R.R. A Transport Model for Prediction of Wildfire Behavior; Los Alamos National Laboratory Science Report, LA-13334-T; Los Alamos National Laboratory: Los Alamos, NM, USA, 1997. [Google Scholar]
- Linn, R.R.; Reisner, J.; Colman, J.J.; Winterkamp, J. Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 2002, 11, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Morvan, D.; Dupuy, J.L.; Rigolot, E.; Valette, J.C. FIRESTAR: A Physically based model to study wildfire behaviour. For. Ecol. Manag. 2006, 234, S114. [Google Scholar] [CrossRef]
- Frangieh, N.; Morvan, D.; Meradji, S.; Accary, G.; Bessonov, O. Numerical simulation of grassland fires behavior using an implicit physical multiphase model. Fire Saf. J. 2018, in press. [Google Scholar] [CrossRef]
- Noble, D. Modeling the heart—From genes to cells to the whole organ. Science 2002, 295, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Kohl, P.; Crampin, E.J.; Quinn, T.A.; Noble, D. Systems biology: An approach. Clin. Pharmacol. Ther. 2010, 88, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Winsberg, E. Simulations, models, and theories: Complex physical systems and their representations. Philos. Sci. 2001, 68, S442–S454. [Google Scholar] [CrossRef]
- Winsberg, E. Simulated experiments: Methodology for a virtual world. Philos. Sci. 2003, 70, 105–125. [Google Scholar] [CrossRef]
- Peck, S.L. Simulation as experiment: A philosophical reassessment for biological modeling. Trends Ecol. Evol. 2004, 19, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Rohrlich, F. Computer simulation in the physical sciences. Philos. Sci. Assoc. 1990, 2, 507–518. [Google Scholar] [CrossRef]
- Roy, C.J.; Oberkampf, W.L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 2011, 200, 2131–2144. [Google Scholar] [CrossRef]
- Brodland, G.W. How computational models can help unlock biological systems. Semin. Cell Dev. Biol. 2015, 47–48, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.J.; Herbertson, E.; Page, W.; Jorgensen, C.A. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. For. Ecol. Manag. 2008, 254, 16–34. [Google Scholar] [CrossRef]
- Hicke, J.A.; Johnson, M.C.; Hayes, J.L.; Preisler, H.K. Effects of bark beetle-caused tree mortality on wildfire. For. Ecol. Manag. 2012, 271, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Romme, W.H.; Griffin, J.M.; Turner, M.G. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol. Monogr. 2011, 81, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.; Morgan, P.; Mell, W.; Parsons, R.; Strand, E.K.; Cook, S. Numerical simulation of crown fire hazard immediately after bark beetle-caused mortality in lodgepole pine forests. For. Sci. 2012, 58, 178–188. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Linn, R.; Parsons, R.; Sieg, C.; Winterkamp, J. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest. Agric. For. Meteorol. 2015, 204, 79–93. [Google Scholar] [CrossRef]
- Sieg, C.H.; Linn, R.R.; Pimont, F.; Hoffman, C.M.; McMillin, J.D.; Winterkamp, J.; Baggett, L.S. Fires following bark beetles: Factors controlling severity and disturbance interactions in ponderosa pine. Fire Ecol. 2017, 13, 1–23. [Google Scholar] [CrossRef]
- Colizzi, F.; Perozzo, R.; Scapozza, L.; Recanatini, M.; Cavalli, A. Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J. Am. Chem. Soc. 2010, 132, 7361–7371. [Google Scholar] [CrossRef] [PubMed]
- Lenhard, J. Computer simulation: The cooperation between experimenting and modeling. Philos. Sci. 2007, 74, 176–194. [Google Scholar] [CrossRef]
- Glatzmaier, G.A.; Roberts, P.H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 1995, 377, 203–209. [Google Scholar] [CrossRef]
- Linn, R.R.; Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere-fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Canfield, J.M.; Linn, R.R.; Sauer, J.A.; Finney, M.; Forthofer, J. A numerical investigation of the interplay between fireline length, geometry, and rate of spread. Agric. For. Meteorol. 2014, 189, 48–59. [Google Scholar] [CrossRef]
- Rykiel, E.J. Testing ecological models: The meaning of validation. Ecol. Model. 1986, 9, 229–234. [Google Scholar] [CrossRef]
- Marvin, J.G. Perspective on computational fluid dynamics validation. AIAA J. 1995, 33, 1778–1787. [Google Scholar] [CrossRef]
- Groesser, S.N.; Schwaninger, M. Contributions to model validation: Hierarchy, process, and cessation. Syst. Dyn. Rev. 2012, 28, 157–181. [Google Scholar] [CrossRef]
- Houssami, M.E.; Lamorlette, A.; Morvan, D.; Hadden, R.M.; Simeoni, A. Framework for submodel improvement in wildfire modeling. Combust. Flame 2018, 190, 12–24. [Google Scholar] [CrossRef]
- Wimsatt, W.C. Re-Engineering Philosophy for Limited Beings; Harvard University Press: Cambridge, MA, USA, 2007; ISBN -13 978-0-674-01545-6. [Google Scholar]
- Yedinak, K.M.; Strand, E.K.; Hiers, J.K.; Varner, J.M. Embracing complexity to advance the science of wildland fire behavior. Fire 2018, 1, 20. [Google Scholar] [CrossRef]
- Jolly, W.M.; Johnson, D.M. Pyro-ecophysiology: Shifting the paradigm of live wildland fuel research. Fire 2018, 1, 8. [Google Scholar] [CrossRef]
- Lutz, J.A.; Larson, A.J.; Swanson, M.E. Advancing fire science with large forest plots and a long-term multidisciplinary approach. Fire 2018, 1, 5. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, C.M.; Sieg, C.H.; Linn, R.R.; Mell, W.; Parsons, R.A.; Ziegler, J.P.; Hiers, J.K. Advancing the Science of Wildland Fire Dynamics Using Process-Based Models. Fire 2018, 1, 32. https://doi.org/10.3390/fire1020032
Hoffman CM, Sieg CH, Linn RR, Mell W, Parsons RA, Ziegler JP, Hiers JK. Advancing the Science of Wildland Fire Dynamics Using Process-Based Models. Fire. 2018; 1(2):32. https://doi.org/10.3390/fire1020032
Chicago/Turabian StyleHoffman, Chad M., Carolyn H. Sieg, Rodman R. Linn, William Mell, Russell A. Parsons, Justin P. Ziegler, and J. Kevin Hiers. 2018. "Advancing the Science of Wildland Fire Dynamics Using Process-Based Models" Fire 1, no. 2: 32. https://doi.org/10.3390/fire1020032