Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling?
Abstract
:1. Introduction
2. The Sources of Uncertainty and a Unifying Theory
3. Need for a Different Approach in Field Experimentation?
Author Contributions
Funding
Conflicts of Interest
References
- Sullivan, A.L. Wildland surface fire spread modelling; 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2009, 18, 349–368. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Assessing the effect of foliar moisture content on the spread rate of crown fires. Int. J. Wildland Fire 2013, 22, 415–427. [Google Scholar] [CrossRef]
- Rothermel, R.C. A mathematical Model for Predicting Fire Spread in Wildland Fuels; Res. Pap. INT-115; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972.
- Finney, M.A.; Cohen, J.D.; McAllister, S.S.; Jolly, W.M. On the need for a theory of wildland fire spread. Int. J. Wildland Fire 2013, 22, 25–36. [Google Scholar] [CrossRef]
- Sullivan, A.L. Inside the Inferno: Fundamental processes of wildland fire behaviour. Part 2: Heat transfer physics and interactions. Curr. Forestry Rep. 2017, 3, 150–171. [Google Scholar] [CrossRef]
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 1993, 3, 31–44. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. On the effect of live fuel moisture content on fire rate of spread. For. Syst. 2017, 26, eSC08. [Google Scholar] [CrossRef]
- Pickett, B.M.; Isackson, C.; Wunder, R.; Fletcher, T.H.; Butler, B.W.; Weise, D.R. Experimental measurements during combustion of moist individual foliage samples. Int. J. Wildland Fire 2010, 19, 153–162. [Google Scholar] [CrossRef]
- McAllister, S.; Grenfell, I.; Hadlow, A.; Jolly, W.M.; Finney, M.; Cohen, J. Piloted ignition of live forest fuels. Fire. Saf. J. 2012, 51, 133–142. [Google Scholar] [CrossRef]
- Jolly, W.M.; Johnson, D.M. Pyro-Ecophysiology: Shifting the paradigm of live wildland fuel research. Fire 2018, 1, 8. [Google Scholar] [CrossRef]
- Fletcher, T.H.; Pickett, B.M.; Smith, S.G.; Spittle, G.S.; Woodhouse, M.M.; Haake, E. Effect of moisture on ignition behavior of moist California chaparral and Utah leaves. Combust. Sci. Technol. 2007, 179, 1183–1203. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. Empirical modelling of fire spread rate in no-wind and no-slope conditions. Forest Sci. 2018, 64, 358–370. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. An empirical model for the effect of wind on fire spread rate. Fire 2018, 1, 31. [Google Scholar] [CrossRef]
- Fons, W.L. Analysis of fire spread in light fuels. J. Agric. Res. 1946, 72, 93–121. [Google Scholar]
- Rothermel, R.C.; Philpot, C.W. Predicting changes in chaparral flammability. J. For. 1973, 71, 640–643. [Google Scholar] [CrossRef]
- Albini, F.A. Computer-Based Models of Wildland Fire Behavior: A Users' Manual; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1976.
- Catchpole, E.A.; Catchpole, W.R.; Rothermel, R.C. Fire behavior experiments in mixed fuel complexes. Int. J. Wildland Fire 1993, 3, 45–57. [Google Scholar] [CrossRef]
- Viegas, D.X.; Soares, J.; Almeida, M. Combustibility of a mixture of live and dead fuel components. Int. J. Wildland Fire 2013, 22, 992–1002. [Google Scholar] [CrossRef]
- Rossa, C.G. The effect of fuel moisture content on the spread rate of forest fires in the absence of wind or slope. Int. J. Wildland Fire 2017, 26, 24–31. [Google Scholar] [CrossRef]
- Marino, E.; Dupuy, J.L.; Pimont, F.; Guijarro, M.M.; Hernando, C.; Linn, R. Fuel bulk density and fuel moisture content effects on fire rate of spread: A comparison between FIRETEC model predictions and experimental results in shrub fuels. J. Fire Sci. 2012, 30, 277–299. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. Fuel-related fire-behaviour relationships for mixed live and dead fuels burned in the laboratory. Can. J. For. Res. 2017, 47, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation—Fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Silvani, X.; Morandini, F. Fire spread experiments in the field: Temperature and heat fluxes measurements. Fire. Saf. J. 2009, 44, 279–285. [Google Scholar] [CrossRef]
- Cruz, M.G.; Butler, B.W.; Viegas, D.X.; Palheiro, P. Characterization of flame radiosity in shrubland fires. Combust. Flame 2011, 158, 1970–1976. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. On the fire-spread rate influence of some fuel bed parameters derived from Rothermel’s model thermal energy balance. Sumar. List 2018, 142, 77–80. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Rossa, C.G. A generic fuel moisture content attenuation factor for fire spread rate empirical models. For. Syst. 2018, 27, e09. [Google Scholar] [CrossRef]
- Cruz, M.G.; Gould, J.S.; Alexander, M.E.; Sullivan, A.L.; McCaw, W.L.; Matthews, S. Empirical-based models for predicting head-fire rate of spread in Australian fuel types. Aust. Forest. 2015, 78, 118–158. [Google Scholar] [CrossRef]
- Burrows, N.; Gill, M.; Sharples, J. Development and validation of a model for predicting fire behaviour in spinifex grasslands of arid Australia. Int. J. Wildland Fire 2018, 27, 271–279. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Sil, A.; Ascoli, D.; Cruz, M.C.; Rossa, C.G.; Alexander, M.E. Characterizing fire behaviour across the globe. In Proceedings of the Fire Continuum Conference: Preparing for the Future of Wildland Fire, Missoula, MT, USA, 21–24 May 2018. [Google Scholar]
- Cruz, M.G.; Gould, J.S.; Kidnie, S.; Bessell, R.; Nichols, D.; Slijepcevic, A. Effects of curing on grassfires: II. Effect of grass senescence on the rate of fire spread. Int. J. Wildland Fire 2015, 24, 838–848. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossa, C.G.; Fernandes, P.M. Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling? Fire 2018, 1, 43. https://doi.org/10.3390/fire1030043
Rossa CG, Fernandes PM. Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling? Fire. 2018; 1(3):43. https://doi.org/10.3390/fire1030043
Chicago/Turabian StyleRossa, Carlos G., and Paulo M. Fernandes. 2018. "Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling?" Fire 1, no. 3: 43. https://doi.org/10.3390/fire1030043
APA StyleRossa, C. G., & Fernandes, P. M. (2018). Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling? Fire, 1(3), 43. https://doi.org/10.3390/fire1030043