The Iberian Peninsula’s Burning Heart—Long-Term Fire History in the Toledo Mountains (Central Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chronology
2.3. Pollen Analysis
2.4. Charcoal Analysis
2.5. Fire Synchrony
2.6. Sites Comparison
3. Results and Discussion
3.1. Fire along the Time: First Sights
3.2. Climatic Influence: from 5000–3000 cal. BP
3.3. Climatic and Human Influence: 3000–500 cal. BP
3.4. The Fire That Creates: from 500 cal. BP to Present
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Naveh, Z. The evolutionary significance of fire in the Mediterranean Region. Vegetatio 1975, 29, 199–208. [Google Scholar] [CrossRef]
- Caldadaro, N. Human ecological intervention and the role of forest fires in human ecology. Sci. Total Environ. 2002, 292, 141–165. [Google Scholar] [CrossRef]
- Pausas, J.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Pérez, B.; Cruz, A.; Fernández-González, F.; Moreno, J.M. Effects of the recent land-use history on the postfire vegetation of uplands in Central Spain. For. Ecol. Manag. 2003, 182, 273–283. [Google Scholar] [CrossRef]
- Rodrigo, A.; Retana, J.; Pico, F.J. Direct regeneration is not the only response of mediterranean forests to large fires. Ecology 2004, 85, 716–729. [Google Scholar] [CrossRef]
- Montiel-Molina, C.; Galiana-Martín, L. Fire Scenarios in Spain: A Territorial Approach to Proactive Fire Management in the Context of Global Change. Forests 2016, 7, 273. [Google Scholar] [CrossRef]
- Goren-Inbar, N. Evidence of Hominin Control of Fire at Gesher Benot Ya’aqov, Israel. Science 2004, 304, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Burjachs, F.; Expósito, I. Charcoal and pollen analysis: Examples of Holocene fire dynamics in Mediterranean Iberian Peninsula. Catena 2015, 135, 340–349. [Google Scholar] [CrossRef]
- López-Sáez, J.A.; Vargas, G.; Ruiz-Fernández, J.; Blarquez, O.; Alba-Sánchez, F.; Oliva, M.; Pérez-Díaz, S.; Robles-López, S.; Abel-Schaad, D. Paleofire dynamics in central Spain during the Late Holocene: The role of climatic and antrhopogenic forcing. Land Degrad. Dev. 2018, 29, 2045–2059. [Google Scholar] [CrossRef]
- Bond, W.J.; Woodland, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2004, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Gil-Romera, G.; Carrión, J.S.; Pausas, J.G.; Sevilla-Callejo, M.; Lamb, H.F.; Fernández, S.; Burjarchs, F. Holocene fire activity and vegetation response in South-Eastern Iberia. Quat. Sci. Rev. 2010, 29, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Vanière, B.; Blarquez, O.; Rius, D.; Doyen, E.; Brücher, T.; Colombaroli, D.; Connor, S.; Feurdean, A.; Hickler, T.; Kaltenrieder, P.; et al. 7000-year human legacy of elevation-dependent European fire regimes. Quat. Sci. Rev. 2016, 132, 206–212. [Google Scholar] [CrossRef]
- Morales-Molino, C.; Tinner, W.; García-Antón, M.; Colombaroli, D. The historical demise of Pinus nigra forests in the Northern Iberian Plateau (south-western Europe). J. Ecol. 2017, 105, 634–646. [Google Scholar] [CrossRef]
- Connor, S.E.; Vanière, B.; Colombaroli, D.; Anderson, R.S.; Carrión, J.S.; Ejarque, A.; Gil Romera, G.; González-Sampériz, P.; Hoefer, D.; Morales-Molino, C.; et al. Humans take control of fire-driven diversity changes in Mediterranean Iberia’s vegetation during the mid-late Holocene. Holocene 2019, 29, 886–901. [Google Scholar] [CrossRef]
- Daniau, A.L.; Sánchez-Goni, M.F.; Beaufort, D.; Loggoun-Défarge, F.; Loutre, M.F.; Duprat, J. Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quat. Sci. Rev. 2007, 26, 1369–1383. [Google Scholar] [CrossRef]
- Delarze, R.; Caldelari, D.; Hainard, P. Effects of fire on forest dynamics in southern Switzerland. J. Veg. Sci. 1992, 3, 55–60. [Google Scholar] [CrossRef]
- Withlock, C.; Bartlein, P.J. Holocene fire activity as a record of past environmental change. Dev. Quat. Sci. 2004, 1, 479–490. [Google Scholar] [CrossRef]
- Bradtmöller, M.; Grimm, S.; Riel-Salvatore, J. Resilience Theory in Archaeological Practice. An Annotated Review. Quat. Int. 2017, 446, 3–16. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019. [Google Scholar] [CrossRef]
- Ortega, M.; Saura, S.; González-Ávila, S.; Gómez-Sanz, V.; Elena-Rosselló, R. Landscape vulnerability to wildfires at the forest-agriculture interface: Half-century patterns in Spain assessed through the SISPARES monitoring framework. Agrofor. Syst. 2012, 85, 331–349. [Google Scholar] [CrossRef]
- Adolf, C.; Wunderle, S.; Colombaroli, D.; Weber, H.; Gobet, E.; Heiri, O.; van Leeuwen, J.F.N.; Bigler, C.; Connor, S.E.; Galka, M.; et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob. Ecol. Biogeogr. 2018, 27, 199–212. [Google Scholar] [CrossRef]
- Tianhua, H.; Lamont, B.B.; Pausas, J.G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 2009. [Google Scholar] [CrossRef]
- Vanière, B.; Power, M.J.; Roberts, N.; Tinner, W.; Carrión, J.S.; Magny, M.; Bartlein, P.; Colombaroli, D.; Daniau, A.L.; Fisinger, W.; et al. Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). Holocene 2011, 21, 53–73. [Google Scholar] [CrossRef]
- Iglesias, V.; Withlock, C. Fire responses to postglacial climate change and human impact in northern Patagonia (41–43°S). Proc. Natl. Acad. Sci. USA 2014. [Google Scholar] [CrossRef] [PubMed]
- Higuera, P.; Brubaker, L.B.; Anderson, P.A.; Sheng Hu, F.; Brown, T.A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 2009, 79, 201–209. [Google Scholar] [CrossRef]
- Gavin, D.G.; Sheng Hu, F.; Lertzman, K.; Corbert. Weak climatic control of stand-scale fire history during the Late Holocene. Ecology 2006, 87, 1722–1732. [Google Scholar] [CrossRef]
- Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 2008, 30, 887–907. [Google Scholar] [CrossRef]
- Whitlock, C.; Shafer, S.L.; Marlon, J. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. For. Ecol. Manag. 2003, 178, 5–21. [Google Scholar] [CrossRef]
- Higuera, P.E.; Gaving, D.G.; Bartlein, P.J.; Hallet, D.J. Peak detection in sediment-charcoal records: Impacts of alternative data analysis methods on fire-history interpretations. Int. J. Wildland Fire 2010, 19, 996–1014. [Google Scholar] [CrossRef]
- Blarquez, O.; Girardin, M.P.; Leys, B.; Ali, A.A.; Aleman, J.C.; Bergeron, Y.; Carcaillet, C. Paleofire reconstruction based on an ensemble-member strategy applied to sedimentary charcoal. Geophys. Res. Lett. 2013, 40, 2667–2672. [Google Scholar] [CrossRef]
- Long, C.J.; Withlock, C. Fire and Vegetation History from the Coastal Rain Forest of the Western Oregon Coast Range. Quat. Res. 2002, 58, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Carcaillet, C.; Bouvier, M.; Fréchette, B.; Laroouche, A.C.; Richard, P.J.H. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. Holocene 2001, 11, 467–476. [Google Scholar] [CrossRef]
- Mooney, S.D.; Tinner, W. The analysis of charcoal in peat and organic sediments. Mir. Peat. 2011, 7, 1–18. [Google Scholar]
- Rémy, C.C.; Fouquemberg, C.; Asselin, H.; Andrieux, B.; Magnan, G.; Brossier, B.; Grondin, P.; Bergeron, Y.; Talon, B.; Girardin, M.P.; et al. Guidelines for the use and interpretation of palaeofire reconstructions based on various archives and proxies. Quat. Sci. Rev. 2018, 193, 312–322. [Google Scholar] [CrossRef]
- Whitlock, C.; Larsen, C. Charcoal as a fire proxy. In Tracking Environmental Change Using Lake Sediments, vol. 3, Terrestrial, Algal, and Siliceous Indicators; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Kluwer: Dordrecht, The Netherlands, 2001; pp. 75–97. [Google Scholar] [CrossRef]
- Lynch, J.A.; Clark, J.S.; Stocks, B.J. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: Interpreting fire regimes from charcoal records in boreal forests. Can. J. For. Res. 2004, 34, 1642–1656. [Google Scholar] [CrossRef]
- Higuera, P.E.; Petters, M.E.; Brubaker, L.B.; Gavin, D.G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 2007, 26, 1790–1809. [Google Scholar] [CrossRef]
- Martín-Serrano, A.; Molina, E.; Nozal, F.; Carral, M.P. Itinerario A2. Transversal en los Montes de Toledo. In Itinerarios Geomorfológicos por Castilla-La Mancha: Libro de las Excursiones Desarrolladas Durante la VIII Reunión Nacional de Geomorfología, Celebrada en Toledo, 22–25 de Septiembre de 2004; Benito, G., Díez Herrero, A., Eds.; Sociedad Española de Geomorfología-CSIC Centro de Ciencias Medioambientales: Madrid, Spain, 2004; pp. 51–82. ISBN 849219586X. [Google Scholar]
- López-Sáez, J.A.; García-Río, R.; Alba-Sánchez, F.; García-Gómez, E.; Pérez-Díaz, S. Peatlands in the Toledo Mountains (central Spain): Characterisation and conservation status. Mires Peat 2014, 15, 1–23. [Google Scholar]
- San Miguel, A.; Rodríguez-Vigal, C.; Perea Garcí a-Calvo, R. Los Quintos de Mora. Gestión integral del monte mediterráneo. In Pastos, Paisajes Culturales Entre Tradición y Nuevos Paradigmas del Siglo XXI. Visitas de Campo; López-Carrasco, C., Rodríguez, M.P., San Miguel, A., Fernández, F., Roig, S., Eds.; Sociedad Española para el Estudio de los Pastos: Madrid, Spain, 2011; p. 704. ISBN 9788461487134. [Google Scholar]
- Morales-Molino, C.; Colombaroli, C.; Tinner, W.; Perea, R.; Valbuena-Carabaña, M.; Carrión, J.S.; Gil, L. Vegetation and fire dynamics during the last 4000 years in the Cabañeros National Park (central Spain). Rev. Paleobot. Paleoec. 2018, 253, 110–122. [Google Scholar] [CrossRef]
- Morales-Molino, C.; Tinner, W.; Perea, R.; Carrión, J.S.; Colombaroli, D.; Valbuena-Carabaña, M.; Zafra, E.; Gil, L. Unprecedented herbivory threatens rear-edge populations of Betula in southwestern Eurasia. Ecology 2019. [Google Scholar] [CrossRef] [PubMed]
- Ninyerola, M.; Roure, J.M.; Fernández, X.P. Atlas climático digital de la Península Ibérica: Metodología y aplicaciones en bioclimatología y geobotánica; Universitat Autònoma de Barcelona: Bellaterra, Spain, 2005; p. 45. ISBN 932860-8-7. [Google Scholar]
- Perea, D.F.; Perea, R. Vegetación y Flora de los Montes de Toledo; Ediciones Covarrubias: Toledo, Spain, 2008; p. 296. ISBN 9788493603519. [Google Scholar]
- Punt, W.; Marcks, A.; Hoen, P.P. Myricaceae. Rev. Paleaeobot. Palynol. 2002, 123, 99–105. [Google Scholar] [CrossRef]
- Luengo-Nicolau, E.; Sánchez-Mata, D. A hazel tree relict community (Corylus avellana L., Betulaceae) from the Guadiana River Middle Basin (Ciudad Real, Spain). Lanzaroa 2015, 36, 133–137. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal. BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Hua, Q.; Barbetti, M. Review of tropospheric bomb 14C data for carbon cycle modelling and age calibration purposes. Radiocarbon 2004, 46, 1273–1298. [Google Scholar] [CrossRef]
- Blaauw, M. Methods and code for classical age-modelling of radiocarbon sequences. Quat. Geochron. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Blaaw, M. Classical Age-Depth Modelling of Cores from Deposits R library. Available online: https://CRAN.R-project.org/package=clam (accessed on 23 April 2019).
- Moore, P.D.; Webb, J.A.; Collinson, M.E. Pollen Analysis; Blackwell: London, UK, 1991; p. 216. ISBN 9780632021765. [Google Scholar]
- Goeury, C.; de Beaulieu, J.L. À propos de la concentration du pollen à l’aide de la liqueur de Thoulet dans les sédiments minéraux. Pollen Spores 1979, 21, 239–251. [Google Scholar]
- Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 1971, 13, 614–621. [Google Scholar]
- Ramil-Rego, P.; Aira-Rodríguez, M.J.; Saá-Otero, P. Clave polínica de las Ericaceae gallegas. Lazaroa 1992, 13, 33–40. [Google Scholar]
- Beug, H. Leiftaden der Pollenbestimmung fürMitteleuropa un angrezende Gebiete; F. Pfeil Verlag: Munich, Germany, 2004. [Google Scholar]
- Reille, M. Pollen et spores d’Europe et d’Afrique du Nord, 2nd ed.; Laboratoire de Botanique Historique et Palynologie: Marseille, France, 1999; p. 543. ISBN 2950717500. [Google Scholar]
- Blackmore, S.; Steinmann, J.A.J.; Hoen, P.P.; Punt, W. Betulaceae and Corylaceae. Rev. Paleaeobot. Palynol. 2003, 123, 71–98. [Google Scholar] [CrossRef]
- Mateus, J.E. Pollen Morphography of Portuguese Ericales. Rev. Biol. 1989, 14, 135–208. [Google Scholar]
- Grimm, E.D. TGView; Illinois State Museum, Research and Collection Center: Springfield, MA, USA, 2004. [Google Scholar]
- Tinner, W.; van Leeuwen, J.F.N.; Colombaroli, D.; Vescovi, E.; van der Knaap, W.O.; Henne, P.D.; Pasta, S.; D’Angelo, S.; La Mantia, T. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 2009, 28, 1498–1510. [Google Scholar] [CrossRef]
- Higuera, P. CharAnalysis R library. Diagnostic and Analytical Tools for Sediment-Charcoal Analysis. Available online: http://Charanalysis.googlepages.com (accessed on 2 April 2019).
- Blarquez, O.; Vannière, B.; Marlon, J.R.; Daniau, A.-L.; Power, M.J.; Brewer, S.; Bartlein, P.J. Paleofire: An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Comput. Geosci. 2014, 72, 255–261. [Google Scholar] [CrossRef]
- Gavin, D.G. K1D: Multivariate Ripley’s K-Function for One-Dimensional Data. 2010. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.6528&rep=rep1&type=pdf (accessed on 2 April 2019).
- Van Bellen, S.; Garneau, M.; Ali, A.A.; Bergeron, Y. Did fires drive Holocene carbon sequestration in boreal ombrotrophic peatlands of eastern Canada? Quat. Res. 2012, 78, 50–59. [Google Scholar] [CrossRef]
- Kelly, R.F.; Higuera, P.E.; Barrett, C.M.; Sheng Hu, F. A signal-to-noise index to quantify the potential for peak detection in sediment–charcoal records. Quat. Res. 2011, 75, 11–17. [Google Scholar] [CrossRef]
- Mudelsee, M.; Börbgen, M.; Tetzlaff, G.; Grünewald, U. Extreme floods in central Europe over the past 500 years. Role of cyclone pathway. “Zugstrasse Vb”. J. Geophys. Res. Atmos. 2004, 109, D23101. [Google Scholar] [CrossRef]
- Carcaillet, C.; Ali, A.A.; Blarquez, O.; Genries, A. Spatial variability of fire history in subalpine forests: From natural to cultural regimes. Ecoscience 2009, 16, 1–12. [Google Scholar] [CrossRef]
- Ali, A.A.; Carcaillet, C.; Bergeron, Y. Long-term fire-frequency variability in the eastern Canadian boreal forest: The influences of climate vs. local factors. Glob. Chang. Biol. 2009, 15, 1230–1241. [Google Scholar] [CrossRef]
- Daniau, A.L.; Bartlein, P.J.; Harrison, S.P.; Prentice, I.C.; Brewer, S.; Friedlingstein, P.; Harrison-Prentice, T.I.; Inoue, J.; Izumi, K.; Marlon, J.R.; et al. Predictability of biomass burning in response to climate changes. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G. Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecology 2006, 187, 249–259. [Google Scholar] [CrossRef]
- Turner, R.; Roberts, N.; Jones, M.D. Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Glob. Planet. Chang. 2008, 63, 317–324. [Google Scholar] [CrossRef]
- López-Sáez, J.A.; Abel-Schaad, D.; Pérez-Díaz, S.; Blanco-González, A.; Alba-Sánchez, F.; Dorado-Valiño, M.; Ruiz-Zapata, B.; Gil-García, M.J.; Gómez-González, C.; Franco-Múgica, F. Vegetation history, climate and human impact in the Spanish Central System over the last 9000 years. Quat. Int. 2014, 353, 98–122. [Google Scholar] [CrossRef]
- Lasanta-Martínez-Martínez, T. La transformación del paisaje en montaña media por la actividad agrícola en relación con las condiciones ambientales. In Acción Humana y Desertificación en Ambientes Mediterráneos; García-Ruiz, J.M., López-García, P., Eds.; Instituto Pirenaico de Ecología: Zaragoza, Spain, 1997; pp. 145–172. ISBN 9788492184224. [Google Scholar]
- Kohler, T.; Giger, M.; Hurni, H.; Ott, C.; Wiesmann, U.; Wyman-von Dach, S.; Maselli, D. Mountains and climate change: A global concern. Mt. Res. Dev. 2010, 30, 53–55. [Google Scholar] [CrossRef]
- Magny, M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat. Int. 2004, 113, 65–79. [Google Scholar] [CrossRef]
- Lillios, K.T.; Blanco-González, A.; Lee, B.; López-Sáez, J.A. Mid-late Holocene climate, demography, and cultural dynamics in Iberia: A multiproxy approach. Quat. Sci. Rev. 2016, 135, 138–153. [Google Scholar] [CrossRef]
- López-Sáez, J.A.; Alba-Sánchez, F.; Nájera-Colino, T.; Molina-González, F.; Pérez-Díaz, S.; Sabariego-Ruiz, S. Paleoambiente y sociedad en la Edad del Bronce de la Mancha: La Motilla del Azuer. CPAG 2014, 24, 391–422. [Google Scholar]
- Bini, M.; Zanchetta, G.; Per+ou, A.; Cartier, R.; Català, A.; Cacho, I.; Dean, J.R.; Di Rita, F.; Drysdale, R.N.; Finnè, M.; et al. The 4.2 la BP Event in the Mediterranean Region: An overview. Clim. Past. 2019, 15, 555–577. [Google Scholar] [CrossRef]
- Schirrmacher, J.; Weinelt, M.; Blanz, T.; Andersen, N.; Salgueiro, E.; Schleider, R.R. Multi-decadal atmospheric and marine climate variability in southern Iberia during the mid-to late- Holocene. Clim. Past. 2019, 15, 617–634. [Google Scholar] [CrossRef]
- Sánchez-del Álamo, C.; Sardinero, S.; Bouso, V.; Hernández-Palacios, G.; Pérez-Badía, R.; Fernández-González, F. Los abedulares del Parque Nacional de Cabañeros: Sistemática, demografía, biología reproductiva y estrategias de conservación. In Proyectos de Investigación en Parques Nacionales: 2006–2009; Organismo Autónomo Parques Nacionale: Madrid, Spain, 2010; pp. 275–310. [Google Scholar]
- Behre, K.E. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 1981, 23, 225–245. [Google Scholar]
- Blanco-González, A.; Lillios, K.T.; López-Sáez, J.A.; Drake, B.L. Cultural, demo-graphic and environmental dynamics of the Copper and Early Bronze Age in Iberia (3300–1500 BC): Towards an interregional multiproxy comparison at the time of the 4.2 ky BP event. J. World Prehist. 2018, 31, 1–79. [Google Scholar] [CrossRef]
- López-Sáez, J.A.; Pérez-Díaz, S.; Rodríguez-Ramírez, A.; Blanco-González, A.; Villarçias-Robles, J.R.; Luelmo-Lautenschlaeger, R.; Jiménez-Moreno, G.; Celestino-Pérez, S.; Cerrillo-Cuenca, E.; Pérez-Asensio, J.N.; et al. Mid-late Holocene environmental and cultural dynamics at the south-west tip of Europe (Doñana National Park, SW Iberia, Spain). J. Archaeol. Sci. Rep. 2018, 22, 58–78. [Google Scholar] [CrossRef]
- Moreno, A.; Pérez, A.; Frigola, J.; Nieto-Moreno, V.; Rodrigo-Gámiz, M.; Martrat, B.; González-Sampériz, P.; Morellón, M.; Martín-Puertas, C.; Corella, J.P.; et al. The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quat. Sci. Rev. 2012, 43, 16–32. [Google Scholar] [CrossRef]
- Martín-Puertas, C.; Valero-Garcés, B.L.; Brauer, A.; Mata, P.; Delgado-Huertas, A.; Dulski, P. The Iberian-Roman humid Period (2600-1600 cal yr BP) in the Zoñar Lake varve record (andalucía, southern Spain). Quat. Res. 2009, 71, 108–120. [Google Scholar] [CrossRef]
- Gil-García, M.J.; Ruiz Zapata, M.B.; Santisteban, J.I.; Mediavilla, R.; López-Pamo, E.; Dabrio, C.J. Late holocene environments in Las Tablas de Daimiel (south central Iberian Peninsula, Spain). Veget. Hist. Archaeobot. 2007, 16, 241–250. [Google Scholar] [CrossRef]
- Sánchez-López, G.; Hernández, A.; Pla-Rabes, S.; Trigo, R.M.; Toro, M.; Granados, I.; Sáez, A.; Masqué, P.; Pueyo, J.J.; Rubio-Inglés, M.J.; et al. Climate reconstruction for the las two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula. Quat. Sci. Rev. 2016, 149, 135–150. [Google Scholar] [CrossRef]
- Fernández-Dávila, A. Paisaje y poblamiento en la Carpetania. Un territorio en definición. Zona Arqueol. 2014, 17, 45–70. [Google Scholar]
- López Sáez, J.A.; Blanco González, A.; López, L.; Ruiz, B.; Dorado, M.; Pérez, S.; Valdeolmillos, A.; Burjachs, F. Landscape and Climatic Changes during the End of the Late Prehistory in the Amblés Valley (Ávila, central Spain) from 1200 to 400 cal BC. Quat. Int. 2009, 90–101. [Google Scholar] [CrossRef]
- Joanin, S.; Magny, M.; Peyron, O.; Vannière, B.; Galop, D. Climate and land-use change during the late Holocene at Lake Ledro (southern Alps, Italy). Holocene 2014, 24, 591–602. [Google Scholar] [CrossRef]
- Van Geel, B.; Heijnis, H.; Charman, D.J.; Thompson, G.; Engels, S. Bog burst in the eastern Netherlands triggered by the 2.8 kyr BP climate event. Holocene 2014, 24, 1465–1477. [Google Scholar] [CrossRef]
- Jiménez-Morán, C. El poblamiento Visigodo en la zona oriental de la provincial de Toledo. In La Mancha occidental y la Mesa de Ocaña; Diputación Provincial de Toledo: Toledo, Spain, 2001; Volume 1, pp. 333–356. [Google Scholar]
- Blanco-González, A.; López-Sáez, J.A.; López-Merino, L. Ocupación y uso del territorio en el sector centromeridional de la cuenca del Duero entre la Antigüedad y la Alta Edad Media (siglos I-XI d.C.). Arch. Esp. Arqueol. 2009, 82, 275–300. [Google Scholar] [CrossRef]
- López-Sáez, J.A.; Peña-Chocarro, L.; López-Merino, L.; García-Gómez, E.; Pérez-Díaz, S.; García-Entero, V.; Castelo- Ruano, R. Paisajes culturales de las villas romanas de Toledo. Cuad. Soc. Esp. Cien. For. 2009, 30, 101–106. [Google Scholar]
- López-Sáez, J.A.; Serra-González, C.; Alba-Sánchez, F.; Robles-López, S.; Pérez-Díaz, S.; Abel-Schaad, D.; Glais, A. Exploring seven hundred years of transhumance, dynamic, fire and human activity through a historical mountain pass in central Spain. J. Mt. Sci. 2016, 13, 1139–1153. [Google Scholar] [CrossRef]
- Blanco-González, A.; López-Sáez, J.A.; Alba, F.; Abel-Schaad, D.; Pérez-Díaz, S. Medieval landscapes in the Spanish Central System (450–1350): A palaeoenvironmental and historical perspective. J. Mediev. Iber. Stud. 2015, 7, 1–17. [Google Scholar] [CrossRef]
- Ruibal, A. El Camino de Toledo a Córdoba por el paso de Alhover y su defensa. In Actas del II Congreso Internacional de Caminería Hispánica; Criado de Val, M.C., Ed.; AACHE Ediciones: Guadalajara, Spain, 1996; Tomo 2; pp. 37–52. ISBN 84-87743-66-8. [Google Scholar]
- Luelmo-Lautenschlaeger, R.; Pérez-Díaz, S.; Alba-Sánchez, F.; Abel-Schaad, D.; López-Sáez, J.A. Vegetation History in the Toledo Mountains (Central Iberia): Human Impact during the Last 1300 Years. Sustainability 2018, 10, 2575. [Google Scholar] [CrossRef]
- Izquierdo-Benito, R. Reconquista y Repoblación de la Tierra Toledana; Diputación provincial de Toledo-Instituto Provincial de Investigaciones y Estudios Toledanos: Toledo, Spain, 1983; 45p, ISBN 0211-4607. [Google Scholar]
- Oliva, M.; Ruiz-Fernández, J.; Barriendos, M.; Benito, G.; Cuadrat, J.M.; Domínguez-Castro, F.; García-Ruiz, J.M.; Giralt, S.; Gómez-Ortiz, A.; Hernández, A.; et al. The Little Ice Age in Iberian mountains. Earth-Sci. Rev. 2018, 177, 175–208. [Google Scholar] [CrossRef]
- Jiménez-de Gregorio, F. La Comarca Histórica Toledana de los Montes de Toledo; Instituto Provincial de Investigación y Estudios Toledanos-Diputación de Toledo: Toledo, Spain, 2008; p. 149. ISBN 8487103943. [Google Scholar]
- De Linares, V.G.G. Los bosques en España a lo largo de la Historia. In Historia de Los Bosques. El Significado de la Madera en el Desarrollo de la Civilización; Perlin, J., Ed.; Gaia Proyecto 2050: Madrid, Spain, 1999; pp. 429–480. ISBN 9788493023218. [Google Scholar]
- Bauer-Maanderscheid, E. Los Montes de España en la Historia; Ministerio de Agricultura: Madrid, Spain, 1980; 610p, ISBN 8474790840. [Google Scholar]
- Martínez, J.; Vega-García, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Blarquez, O.; Ali, A.A.; Girardin, M.P.; Grondin, P.; Fréchette, B.; Bergeron, Y.; Hély, C. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Sci. Rep. 2015, 5, 13356. [Google Scholar] [CrossRef] [PubMed]
- Conedera, M.; Tinner, W.; Nelf, C.; Meurer, M.; Dickens, A.F.; Krebs, P. Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 2009, 28, 555–576. [Google Scholar] [CrossRef]
- Hennebelle, A.; Grondin, P.; Aleman, J.C.; Ali, A.A.; Bergeron, Y.; Borcard, D.; Blarquez, O. Using paleoecology to improve reference conditions for ecosystem-based management in western spruce-moss subdomain of Québec. For. Ecol. Manag. 2018, 430, 157–165. [Google Scholar] [CrossRef]
Name | Municipality | Latitude | Longitude | Altitude (m.a.s.l.) | Area (ha) | Nutrients | Protection |
---|---|---|---|---|---|---|---|
Brezoso | Alcoba de los Montes | 39°20′56.69″ N | 4°21′39.80″ W | 733 | 10.62 | M | RNP |
Viñuelas | Alcoba de los Montes | 39°22′28.00″ N | 4°29′18.08″ W | 761 | 0.02 | M | RNP |
El Perro | Puebla de don Rodrigo | 39°3′51.49″ N | 4°45′20.25″ W | 690 | 3.74 | M | NP |
Laboratory Code | Depth (cm) | 14C Age (BP) | Calibrated Age (cal. BP, 2σ) | Calibrated age (cal. BP, Average Probability) |
---|---|---|---|---|
Ua-55290 | 20 | 122.3 ± 0.3 | −6.04–(−5.56) | −5.8 |
Ua-55291 | 40 | 185 ± 25 | 0–294 | 181 |
Poz-84254 | 52 | 955 ± 30 | 796–927 | 855 |
Ua-55292 | 60 | 2345 ± 27 | 2324–2439 | 2352 |
Poz-84255 | 68 | 2485 ± 30 | 2438–2724 | 2585 |
Ua-55293 | 75 | 2594 ± 27 | 2719–2762 | 2743 |
Ua-55294 | 84 | 3445 ± 31 | 3632–3828 | 3704 |
Poz-84256 | 90 | 3830 ± 35 | 4099–4406 | 4232 |
Ua-55295 | 95 | 4148 ± 31 | 4575–4824 | 4693 |
Poz-84257 | 99 | 6470 ± 40 | 7293–7457 | 7376 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luelmo-Lautenschlaeger, R.; Blarquez, O.; Pérez-Díaz, S.; Morales-Molino, C.; López-Sáez, J.A. The Iberian Peninsula’s Burning Heart—Long-Term Fire History in the Toledo Mountains (Central Spain). Fire 2019, 2, 54. https://doi.org/10.3390/fire2040054
Luelmo-Lautenschlaeger R, Blarquez O, Pérez-Díaz S, Morales-Molino C, López-Sáez JA. The Iberian Peninsula’s Burning Heart—Long-Term Fire History in the Toledo Mountains (Central Spain). Fire. 2019; 2(4):54. https://doi.org/10.3390/fire2040054
Chicago/Turabian StyleLuelmo-Lautenschlaeger, Reyes, Olivier Blarquez, Sebastián Pérez-Díaz, César Morales-Molino, and José Antonio López-Sáez. 2019. "The Iberian Peninsula’s Burning Heart—Long-Term Fire History in the Toledo Mountains (Central Spain)" Fire 2, no. 4: 54. https://doi.org/10.3390/fire2040054
APA StyleLuelmo-Lautenschlaeger, R., Blarquez, O., Pérez-Díaz, S., Morales-Molino, C., & López-Sáez, J. A. (2019). The Iberian Peninsula’s Burning Heart—Long-Term Fire History in the Toledo Mountains (Central Spain). Fire, 2(4), 54. https://doi.org/10.3390/fire2040054