RETRACTED: Propensities of Old Growth, Mature and Regrowth Wet Eucalypt Forest, and Eucalyptus nitens Plantation, to Burn During Wildfire and Suffer Fire-Induced Crown Death
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Figure Type | Latitude | Longitude |
---|---|---|
Mature Forest N = 28 | −43.08303 | 146.64068 |
−43.1454 | 146.6975 | |
−43.18016 | 146.69161 | |
−43.07995 | 146.71744 | |
−43.09978 | 146.73659 | |
−43.14320117 | 146.7217038 | |
−43.11016 | 146.76972 | |
−43.14243 | 146.75797 | |
−43.11317 | 146.82207 | |
−43.12675716 | 146.7633651 | |
−43.0801363 | 146.7491124 | |
−43.11205417 | 146.6818051 | |
−43.19338837 | 146.706203 | |
−43.15118863 | 146.7092791 | |
−43.09835272 | 146.813395 | |
−43.10181905 | 146.6846046 | |
−43.0960364 | 146.7176345 | |
−43.16487128 | 146.8008163 | |
−43.12446248 | 146.805289 | |
−43.12257778 | 146.732741 | |
−43.05575735 | 146.7370589 | |
−43.06846053 | 146.7907608 | |
−43.06377419 | 146.8190625 | |
−43.15994797 | 146.8146598 | |
−43.14499515 | 146.803759 | |
−43.09941536 | 146.6808368 | |
−43.08424 | 146.67764 | |
−43.07956 | 146.77419 | |
Old Growth N = 27 | −43.08515 | 146.64824 |
−43.12263 | 146.6476 | |
−43.0655074 | 146.7038219 | |
−43.08431 | 146.70658 | |
−43.12503 | 146.70664 | |
−43.08882475 | 146.6577918 | |
−43.19767106 | 146.6904315 | |
−43.17274107 | 146.7948133 | |
−43.06194675 | 146.7333377 | |
−43.1395778 | 146.7008108 | |
−43.1061844 | 146.6928751 | |
−43.12869 | 146.75099 | |
−43.05016 | 146.78821 | |
−43.1146543 | 146.6837872 | |
−43.17519516 | 146.7040771 | |
−43.20208056 | 146.7122196 | |
−43.21392569 | 146.6989478 | |
−43.04989754 | 146.7596096 | |
−43.09795 | 146.75448 | |
−43.13735028 | 146.7635581 | |
−43.05699434 | 146.7330971 | |
−43.08764566 | 146.8224413 | |
−43.07408108 | 146.7430955 | |
−43.07691053 | 146.7238735 | |
−43.17294907 | 146.8107889 | |
−43.08509 | 146.68944 | |
−43.07502 | 146.7679 | |
Plantation N = 10 | −43.15255 | 146.69509 |
−43.18547 | 146.69224 | |
−43.11973 | 146.70522 | |
−43.10448 | 146.73063 | |
−43.11764 | 146.81243 | |
−43.07688353 | 146.749029 | |
−43.11737 | 146.74405 | |
−43.05044 | 146.80162 | |
−43.1008982 | 146.8223385 | |
−43.06859812 | 146.7831244 | |
Regrowth N = 35 | −43.11947 | 146.65409 |
−43.06204 | 146.70617 | |
−43.13761358 | 146.7234643 | |
−43.11815 | 146.76958 | |
−43.15569 | 146.75947 | |
−43.08713092 | 146.665777 | |
−43.12284072 | 146.7610805 | |
−43.20281548 | 146.693155 | |
−43.16940257 | 146.7962776 | |
−43.0633208 | 146.7311239 | |
−43.13596986 | 146.6994332 | |
−43.11101999 | 146.7008032 | |
−43.18401673 | 146.6963299 | |
−43.21111571 | 146.7092367 | |
−43.21876749 | 146.696354 | |
−43.18973554 | 146.7034153 | |
−43.15551434 | 146.7100481 | |
−43.05176174 | 146.7614738 | |
−43.1013635 | 146.6893879 | |
−43.09937212 | 146.7055105 | |
−43.10931557 | 146.7421104 | |
−43.15635164 | 146.7914153 | |
−43.14272755 | 146.7683749 | |
−43.12690012 | 146.8009437 | |
−43.11625033 | 146.7345929 | |
−43.05748329 | 146.7374861 | |
−43.05095175 | 146.7339691 | |
−43.06637026 | 146.8211688 | |
−43.08214941 | 146.8213097 | |
−43.15929051 | 146.8167518 | |
−43.14340951 | 146.8013612 | |
−43.07417457 | 146.7459314 | |
−43.07860165 | 146.7252177 | |
−43.17019969 | 146.8031068 | |
−43.09698709 | 146.6768909 |
References
- Whittaker, J. Ten years after the Black Saturday fires, what have we learnt from post-fire research? Aust. J. Emerg. Manag. 2019, 34, 32–37. [Google Scholar]
- Bushfires Death Toll Rises to 33 after Body Found in Burnt-Out House near MORUYA. Available online: https://www.theguardian.com/australia-news/2020/jan/24/bushfires-death-toll-rises-to-33-after-body-found-in-burnt-out-house-near-moruya (accessed on 24 January 2020).
- Cochrane, M.A.; Barber, C.P. Climate change, human land use and future fires in the Amazon. Glob. Chang. Biol. 2009, 15, 601–612. [Google Scholar] [CrossRef]
- Mariani, M.; Holz, A.; Veblen, T.; Williamson, G.; Fletcher, M.-S.; Bowman, D. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere. Geophys. Res. Lett. 2018, 45, 5071–5081. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Spies, T.A.; White, E.M.; Kline, J.D.; Fischer, A.P.; Ager, A.; Bailey, J.; Bolte, J.; Koch, J.; Platt, E.; Olsen, C.S.; et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 2014, 19, 9. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Hickey, J.E.; Wilkinson, G.R. The development and current implementation of silvicultural practices in native forests in Tasmania. Aust. For. 1999, 62, 245–254. [Google Scholar] [CrossRef]
- Forestry Tasmania. Lowland Wet Eucalypt Forest; Native Forest Silviculture Technical Bulletin No. 8; Forestry Tasmania: Hobart, Australia, 1998. [Google Scholar]
- Volkova, L.; Aparicio, A.G.W.; Weston, C.J. Fire intensity effects on post-fire fuel recovery in Eucalyptus open forests of south-eastern Australia. Sci. Total Environ. 2019, 670, 328–336. [Google Scholar] [CrossRef]
- Taylor, C.; McCarthy, M.A.; Lindenmayer, D.B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 2014, 7, 355–370. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
- Meyn, A.; White, P.S.; Buhk, C.; Jentsch, A. Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Prog. Phys. Geogr. Earth Environ. 2007, 31, 287–312. [Google Scholar] [CrossRef]
- Fox-Hughes, P. A fire danger climatology for Tasmania. Aust. Meteorol. Manag. 2008, 57, 109–120. [Google Scholar]
- Attiwill, P.M.; Adams, M.A. Mega-fires, inquiries and politics in the eucalypt forests of Victoria, south-eastern Australia. For. Ecol. Manag. 2013, 294, 45–53. [Google Scholar] [CrossRef]
- Williamson, G.J.; Prior, L.D.; Jolly, W.M.; Cochrane, M.A.; Murphy, B.P.; Bowman, D.M. Measurement of inter-and intra-annual variability of landscape fire activity at a continental scale: The Australian case. Environ. Res. Lett. 2016, 11, 035003. [Google Scholar] [CrossRef]
- Zylstra, P.J. Flammability dynamics in the Australian Alps. Austral Ecol. 2018, 43, 578–591. [Google Scholar] [CrossRef]
- Cawson, J.G.; Duff, T.J.; Swan, M.H.; Penman, T.D. Wildfire in wet sclerophyll forests: The interplay between disturbances and fuel dynamics. Ecosphere 2018, 9, e02211. [Google Scholar] [CrossRef]
- Mackey, B.; Lindenmayer, D.; Gill, M.; Lindesay, J. Wildlife, Fire & Future Climate: A Forest Ecosystem Analysis; CSIRO Publishing: Victoria, Australia, 2020; p. 30. [Google Scholar]
- Bowman, D.M.; Murphy, B.P.; Neyland, D.L.J.; Williamson, G.J.; Prior, L.D. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob. Chang. Biol. 2014, 20, 1008–1015. [Google Scholar] [CrossRef]
- Serong, M.; Lill, A. The timing and nature of floristic and structural changes during secondary succession in wet forests. Aust. J. Bot. 2008, 56, 220–231. [Google Scholar] [CrossRef]
- Zylstra, P.; Bradstock, R.A.; Bedward, M.; Penman, T.D.; Doherty, M.D.; Weber, R.O.; Cary, G.J. Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: Species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS ONE 2016, 11, e0160715. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Hunter, M.L.; Burton, P.J.; Gibbons, P. Effects of logging on fire regimes in moist forests. Conserv. Lett. 2009, 2, 271–277. [Google Scholar] [CrossRef]
- McColl-Gausden, S.C.; Penman, T.D. Pathways of change: Predicting the effects of fire on flammability. J. Environ. Manag. 2019, 232, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Cawson, J.G.; Duff, T.J.; Tolhurst, K.G.; Baillie, C.C.; Penman, T.D. Fuel moisture in Mountain Ash forests with contrasting fire histories. For. Ecol. Manag. 2017, 400, 568–577. [Google Scholar] [CrossRef]
- Bowman, D.M.; Williamson, G.J.; Prior, L.D.; Murphy, B.P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 2016, 25, 1166–1172. [Google Scholar] [CrossRef]
- Attiwill, P.M.; Ryan, M.F.; Burrows, N.; Cheney, N.P.; McCaw, L.; Neyland, M.; Read, S. Timber harvesting does not increase fire risk and severity in wet eucalypt forests of southern Australia. Conserv. Lett. 2014, 7, 341–354. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the Blue Mountains: Influence of vegetation type and inferring fire intensity. Int. J. Wildland Fire 2006, 15, 213–226. [Google Scholar] [CrossRef]
- Woodgate, P.W.; Peel, B.D.; Coram, J.E.; Farrell, S.J.; Ritman, K.T.; Lewis, A. Old-growth forest studies in Victoria, Australia Concepts and principles. For. Ecol. Manag. 1996, 85, 79–94. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Peacock, R.J.; Cullen, P.J.; Neyland, M.G. The Wet Eucalypt Forests of Tasmania; Tasmanian Conservation Trust: Hobart, Australia, 1988. [Google Scholar]
- Australasian Fire and Emergency Service Authorities Council. AFAC Independent Operational Review: A Review of the Management of the Tasmanian Fires of December 2018–March 2019. Available online: http://www.fire.tas.gov.au/userfiles/AFAC/AFAC_Review.pdf (accessed on 1 March 2020).
- LIST State Aerial Photo Basemap, Accessed through QGIS. 2019. Available online: https://www.thelist.tas.gov.au/app/content/data/geo-meta-data-record?detailRecordUID=46146ba8-2485-411b-bd06-e89447b7329b (accessed on 30 January 2020).
- Department of Primary Industries, Parks, Water & Environment. TasVeg Live: The Digital Vegetation Map of Tasmania; Tasmanian Government: Hobart, Australia, 2014.
- ESRI Images, Accessed on QGIS. 2019. Available online: https://maps.thelist.tas.gov.au/listmap/app/list/map (accessed on 1 March 2020).
- MODIS Collection 6 NRT Hotspot/Active Fire Detections MCD14ML. Available online: https://earthdata.nasa.gov/firms (accessed on 30 January 2020).
- Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 2013, 131, 152–159. [Google Scholar] [CrossRef]
- Department of State Growth, Tasmanian Government. Tasmania’s Forest Management System: An Overview. 2017. Available online: https://www.stategrowth.tas.gov.au/__data/assets/pdf_file/0018/154620/5_Overview_Tasmania_Forest_Management_System_2017.pdf (accessed on 21 January 2020).
- Clarke, P.J.; Knox, K.J.E.; Bradstock, R.A.; Munoz-Robles, C.; Kumar, L. Vegetation, terrain and fire history shape the impact of extreme weather on fire severity and ecosystem response. J. Veg. Sci. 2014, 25, 1033–1044. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 2012, 113, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Ashton, D.H. The development of even-aged stands of Eucalyptus regnans F. Muell. in central Victoria. Aust. J. Bot. 1976, 24, 397–414. [Google Scholar] [CrossRef]
- Florence, R.G. The ecological basis of forest fire management in New South Wales. In The Burning Continent: Forest Ecosystems and Fire Management in Australia; Attiwill, P.M., Florence, R.G., Hurditch, W.E., Eds.; Institute of Public Affairs: Jolimont, Australia, 1994. [Google Scholar]
- Lindenmayer, D.B.; Hobbs, R.J.; Likens, G.E.; Krebs, C.J.; Banks, S.C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl. Acad. Sci. USA 2011, 108, 15887–15891. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.D. Fire, air, water and earth—An elemental ecology of Tasmania. Proc. Ecol. Soc. Australia 1968, 3, 9–16. [Google Scholar]
- McCaw, L. Understanding the level of fire hazard in a blue gum plantation. Aust. For. Grow. 2003, 25, 18–19. [Google Scholar]
- McCaw, L.; Smith, B. Fire Behaviour in a 6 Year Old Eucalyptus Globulus Plantation during Conditions of Extreme Fire Danger—A Case Study from South-Western Australia; Science Division, Department of Conservation and Land Management: Manjimup Australia, 2005.
- Ndalila, M.N.; Williamson, G.J.; Bowman, D.M. Geographic patterns of fire severity following an extreme eucalyptus forest fire in southern Australia: 2013 Forcett-Dunalley fire. Fire 2018, 1, 40. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef]
- Sillett, S.C.; Van Pelt, R.; Kramer, R.D.; Carroll, A.L.; Koch, G.W. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. For. Ecol. Manag. 2015, 348, 78–91. [Google Scholar] [CrossRef]
- Dean, C.; Kirkpatrick, J.B.; Friedland, A. Conventional intensive logging promotes loss of organic carbon from the mineral soil. Glob. Chang. Biol. 2017, 23, 1. [Google Scholar] [CrossRef]
Old Growth | Mature | Regrowth | Plantation | P | |
---|---|---|---|---|---|
Unburned (%) | 41 | 21 | 17 | 40 | |
Understorey fire (%) | 48 | 50 | 22 | 0 | |
Crown fire (%) | 11 | 29 | 60 | 60 | |
0.001 (C) | |||||
Valley (%) | 22 | 32 | 29 | 50 | |
Lower slope (%) | 56 | 46 | 54 | 40 | |
Upper slope (%) | 22 | 21 | 17 | 10 | |
0.783 (C) | |||||
Elevation (m) | 233 | 187 | 197 | 150 | 0.185 |
Slope (%) | 21 | 17 | 24 | 16 | 0.822 |
Aspect (°) | 128 | 144 | 137 | 113 | 0.922 |
Average maximum potential FFDI | 20.32 | 21.13 | 24.54 | 19.22 | 0.17 |
Mean potential FFDI | 11.07 | 11.05 | 12.15 | 12.94 | 0.51 |
Old Growth | Mature | Regrowth | Plantation | P | |
---|---|---|---|---|---|
Old growth vs. mature (n = 10) | |||||
Burned | 0 | 60 | na | na | 0.038 |
Crown fire | 0 | 0 | na | na | 1.000 |
Old growth vs. regrowth (n = 38) | |||||
Burned | 68 | na | 79 | na | 0.461 |
Crown | 11 | na | 53 | na | 0.005 |
Mature and old growth vs. plantation (n = 20) | |||||
Burned | 100 | na | 60 | 0.025 | |
Crown | 40 | Na | 60 | 0.371 | |
Mature vs. regrowth (n = 32) | |||||
Burned | na | 75 | 88 | na | 0.365 |
Crown | Na | 31 | 69 | na | 0.034 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winoto-Lewin, S.; Sanger, J.C.; Kirkpatrick, J.B. RETRACTED: Propensities of Old Growth, Mature and Regrowth Wet Eucalypt Forest, and Eucalyptus nitens Plantation, to Burn During Wildfire and Suffer Fire-Induced Crown Death. Fire 2020, 3, 13. https://doi.org/10.3390/fire3020013
Winoto-Lewin S, Sanger JC, Kirkpatrick JB. RETRACTED: Propensities of Old Growth, Mature and Regrowth Wet Eucalypt Forest, and Eucalyptus nitens Plantation, to Burn During Wildfire and Suffer Fire-Induced Crown Death. Fire. 2020; 3(2):13. https://doi.org/10.3390/fire3020013
Chicago/Turabian StyleWinoto-Lewin, Suyanti, Jennifer C. Sanger, and James B. Kirkpatrick. 2020. "RETRACTED: Propensities of Old Growth, Mature and Regrowth Wet Eucalypt Forest, and Eucalyptus nitens Plantation, to Burn During Wildfire and Suffer Fire-Induced Crown Death" Fire 3, no. 2: 13. https://doi.org/10.3390/fire3020013