Preceding Fall Drought Conditions and Overwinter Precipitation Effects on Spring Wildland Fire Activity in Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weather and Fire Data
2.2. Fire Season Definition
2.3. Number of Fires
2.4. Suppression Effectiveness
2.5. Area Burned
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gillett, N.P.; Weaver, A.J.; Zwiers, F.W.; Flannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, L18211.18211–L18211.18214. [Google Scholar] [CrossRef]
- Jain, P.; Wang, X.; Flannigan, M.D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 2018, 26. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J.M.; Flannigan, M.D. Fire regime changes in Canada over the last half century. Can. J. For. Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Boulanger, Y.; Gauthier, S.; Burton, P.J. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 2014, 44, 365–376. [Google Scholar] [CrossRef]
- Wotton, B.M.; Flannigan, M.D.; Marshall, G.A. Potential climate change impacts on fire intensity and wildfire suppression thresholds in Canada. Environ. Res. Lett. 2017, 12, 095003. [Google Scholar] [CrossRef]
- Tymstra, C.; Woolford, D.G.; Flannigan, M.D. Statistical Surveillance Thresholds for Enhanced Situational Awareness of Spring Wildfire Activity in Alberta, Canada. J. Environ. Stat. 2019, 9, 1–26. [Google Scholar]
- MNP. A Review of the 2016 Horse River Wildfire; Forestry Division, Alberta Agriculture and Forestry: Edmonton, AB, Canada, 2017; p. 88.
- Statistics Canada. Infographic: Fort McMurray 2016 Wildfire—Economic Impact. 2017. Available online: https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017007-eng.pdf (accessed on 22 June 2020).
- Flat Top Complex Wildfire Review Committee. Flat Top Complex; Environment and Sustainable Resource Development: Slave Lake, AB, Canada, May 2012; p. 95. [Google Scholar]
- Albert-Green, A.; Dean, C.B.; Martell, D.L.; Woolford, D.G. A methodology for investigating trends in changes in the timing of the fire season with applications to lightning-caused forest fires in Alberta and Ontario, Canada. Can. J. For. Res. 2013, 43, 39–45. [Google Scholar] [CrossRef]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Van Wagner, C.E.; McAlpine, R.S.; Lynham, T.J.; Dubé, D.E. Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 458–465. [Google Scholar]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report 35; Petawawa National Forestry Institute: Ottawa, ON, Canada, 1987; p. 48.
- Turner, J.; Lawson, B.D. Weather in the Canadian Forest Fire Danger Rating System—A User Guide to National Standards and Practices; BC-X-177; Pacific Forest Research Centre: Victoria, BC, Canada, 1978; p. 40. [Google Scholar]
- Meyn, A.; Taylor, S.W.; Flannigan, M.D.; Thonicke, K.; Cramer, W. Relationship between fire, climate oscillations, and drought in British Columiba, Canada, 1920–2000. Glob. Chang. Biol. 2010, 16. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Sciencexpress 2006, 313. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Riley, K.L.; Abatzoglou, J.T.; Grenfell, I.C.; Klene, A.E.; Heinsch, F.A. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: The role of temporal scale. Int. J. Wildland Fire 2013, 22, 894–909. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B 2016, 371, 1–10, (+12 corrections). [Google Scholar] [CrossRef] [PubMed]
- Palmer, W.C. Meteorological Drought; Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Keetch, J.J.; Byram, G.M. A Drought Index for Forest Fire Control; Southeastern Forest Experiment Station: Asheville, NC, USA, 1968; p. 35.
- McKee, T.B.; Doeken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the American Meteorological Society, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System-1978; Gen. Tech. Rep. INT-39; USDA Forest Service, Intermountain Forest range Experiment Station: Ogden, UT, USA, 1977.
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Urbieta, I.R.; Zavala, G.; Bedia, J.; Gutierrez, J.M.; San Miguel-Ayanz, J.; Camia, A.; Keeley, J.E.; Moreno, J.M. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environ. Res. Lett. 2015, 10, 114013. [Google Scholar] [CrossRef]
- Kitzberger, T.; Falk, D.A.; Westerling, A.L.; Swetnam, T.W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Relative importance of weather and climate on wildfire growth in interior Alaska. Int. J. Wildland Fire 2011, 20, 479–486. [Google Scholar] [CrossRef]
- Stocks, B.J. The 1976–1977 drought situation in Ontario. For. Chron. 1979, 55, 91–94. [Google Scholar] [CrossRef]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 2002, 107, 5-1–5-12. [Google Scholar] [CrossRef]
- Johnson, E.A.; Keith, D.M.; Martin, Y.E. Comparing measured duff moisture with a water budget model and the duff and drought codes of the Canadian Fire Weather Index. For. Sci. 2013, 59, 78–92. [Google Scholar] [CrossRef]
- Cunningham, A.A.; Martell, D.L. A stochastic model for the occurrence of man-caused forest fires. Can. J. For. Res. 1973, 3, 282–287. [Google Scholar] [CrossRef]
- Alexander, M.E. Calculating Spring Drought Code Starting Values in the Prairie Provinces and Northwest Territories; Northern Forestry Centre, Canadian Forestry Service: Edmonton, AB, Canada, 1982; p. 4.
- LaZerte, S.E.; Albers, S. Weathercan: Download and format weather data from Environment and Climate Change Canada. J. Open Source Softw. 2018, 3, 571. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Fletcher Quince, A. Performance measures for forest fire management organizations: Evaluating and enhancing initial attack operations in the province of Alberta’s Boreal Natural Region. Compos. Sci. Technol. 2009, 65, 735–740. [Google Scholar]
- Wotton, B.M.; Flannigan, M.D. Length of the fire season in a changing climate. For. Chron. 1993, 69, 187–192. [Google Scholar] [CrossRef]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression models for count data in R. J. Stat. Softw. 2008, 27, 1–25. [Google Scholar] [CrossRef]
- Kleiber, C.; Zeileis, A. AER: Applied Econometrics with Rpackage Version 1.2-7. 2019. Available online: https://CRAN.R-project.org/package=AER (accessed on 22 June 2020).
- Woolford, D.G.; Bellhouse, D.R.; Braun, W.J.; Dean, C.B.; Martell, D.L.; Sun, J. A spatiotemporal model for people-caused forest fire occurrence in the Romeo Malette Forest. J. Environ. Stat. 2011, 2, 2–16. [Google Scholar]
- Taylor, S.W.; Woolford, D.G.; Dean, C.B.; Martell, D.L. Wildfire prediction to inform management: Statistical science challenges. Stat. Sci. 2013, 28, 586–615. [Google Scholar] [CrossRef]
- Martell, D.L.; Otukol, S.; Stocks, B.J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Can. J. For. Res. 1987, 17, 394–401. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Peel, D. Finite Mixture Models; John Wiley & Sons: New York, NY, USA, 2000; p. 426. [Google Scholar]
- Jackman, S. Pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University, R package version 0.95; Department of Political Science, Stanford University: Stanford, CA, USA, 2008. [Google Scholar]
- Beverly, J.L. Time since prior wildfire affects subsequent fire containment in black spruce. Int. J. Wildland Fire 2017, 26, 919–929. [Google Scholar] [CrossRef]
- Cardil, A.; Laurente, M.; Boucher, D.; Boucher, J.; Gauthier, S. Factors influencing fire suppression success in the province of Quebec (Canada). Can. J. For. Res. 2018, 49. [Google Scholar] [CrossRef]
- Arienti, M.S.; Cumming, S.G.; Boutin, S. Empirical models of forest fire initial attack success probabilities: The effects of fuels, anthropogenic linear features, fire weather and management. Can. J. For. Res. 2006, 36, 33155–33166. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Krueger, E.S.; Ochsner, T.E.; Carlson, J.D.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D. Concurrent and antecedent soil moisture relate positively or negatively to probability of large wildfires depending on season. Int. J. Wildland Fire 2016, 25, 657–668. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef]
- Ecological Stratification Working Group. A National Ecological Framework for Canada; Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources: Ottawa, ON, Canada, 1995. [Google Scholar]
- Rowe, J.S. Forest Regions of Canada; Information Canada: Ottawa, ON, Canada, 1972; p. 172. [Google Scholar]
- Podur, J.J.; Martell, D.L. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996–2006. Ecol. Appl. 2009, 19, 1246–1252. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Harrington, J.B. A Study of the Relation of Meteorological Variables to Monthly Provincial Area Burned by Wildfire in Canada 1953–1980. J. Appl. Meteorol. 1988, 27, 441–452. [Google Scholar] [CrossRef]
- Elmes, M.C.; Thompson, D.K.; Sherwood, J.H.; Price, J.S. Hydrometeorological conditions preceding wildfire, and the subsequent burning of a fen watershed in Fort McMurray, Alberta, Canada. Nat. Hazards Earth Syst. Sci. 2018, 18, 157–170. [Google Scholar] [CrossRef]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Martell, D.L.; Bevilacqua, E.; Stocks, B.J. Modelling seasonal variation in daily people-caused forest fire occurrence. Can. J. For. Res. 1989, 19, 1555–1563. [Google Scholar] [CrossRef]
- Vega-Garcia, C.; Woodard, P.M.; Titus, S.J.; Adamowicz, W.L.; Lee, B.S. A Logit Model for Predicting the Daily Occurrence of Human Caused Forest Fires. Int. J. Wildland Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L.; Logan, K.A. Climate Change and People-Caused Forest Fire Occurrence in Ontario. Clim. Chang. 2003, 60, 275–295. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Woolford, D.G.; Dean, C.B.; Martell, D.L.; Cao, J.; Wotton, B.M. Lightning-caused forest fire risk in Northwestern Ontario, Canada, is increasing and associated with anomalies in fire weather. Environmetrics 2014, 25, 406–416. [Google Scholar] [CrossRef]
- Wotton, B.M.; Beverly, J.L. Stand-specific litter moisture content calibrations for the Canadian Fine Fuel Moisture Code. Int. J. Wildland Fire 2007, 16, 463–472. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Hobbins, M.; Brown, T.J.; VanderMolen, K.; Wall, T.; Huntington, J.L.; Svoboda, M. Establishing relationships between drought indices and wildfire danger outputs: A test case for the California-Nevad drought early warning system. Climate 2019, 7, 52. [Google Scholar] [CrossRef]
- Chavardes, R.D.; Daniels, L.D.; Eskelson, B.N.I.; Pickell, P.D. Monthly adaptations of the Drought Code reveal nuanced fire-drought associations in montane forests with a mixed-severity fire regime. Int. J. Wildland Fire 2019, 28, 445–455. [Google Scholar] [CrossRef]
Average | |||||||
---|---|---|---|---|---|---|---|
Region | Area (km2) | DCf | Pow (mm) | NOF | Escape (%) | Area (ha) | Length (days) |
Grande Prairie (GP) | 35,860 | 355.5 (115.8) | 125.6 (49.0) | 38 (27) | 13 (11) | 808 (2621) | 59 (18) |
Lac La Biche (LLB) | 39,157 | 386.2 (127.7) | 96.2 (30.2) | 120 (73) | 25 (14) | 47,269 (13,845) | 64 (14) |
Edson (EDS) | 28,609 | 282.0 (93.8) | 108.8 (47.2) | 63 (38) | 44 (39) | 1975 (8919) | 69 (19) |
Rocky Mountain House (RMH) | 20,892 | 197.2 83.3) | 94.8 (36.8) | 42 (31) | 13 (11) | 706 (2067) | 63 (17) |
Kenora (KEN) | 19,725 | 155.0 (113.9) | 172.3 (58.8) | 24 (10) | 9 (7) | 792 (3634) | 49 (15) |
Dryden (DRY) | 22,696 | 172.8 (98.7) | 159.8 (59.6) | 11 (6) | 8 (11) | 33 (78) | 50 (14) |
Kirkland Lake (KLK) | 13,879 | 92.5 (64.2) | 314.0 (86.4) | 10 (8) | 1 (6) | 184 (586) | 39 (12) |
Sudbury (SUD) | 22,801 | 94.8 (68.5) | 347.4 (81.0) | 25 (15) | 14 (8) | 138 (334) | 52 (13) |
Region | Variables | Count Coef | s.e. | p | ZI Coef | s.e. | p |
---|---|---|---|---|---|---|---|
GP | Intercept | −2.40700 | 0.4044 | 0.000 | 0.936 | 0.077 | 0.000 |
Poly (FFMC, 3)1 | 0.03267 | 0.0043 | 0.000 | −17.233 | 6.564 | 0.009 | |
Poly (FFMC, 3)2 | −7.533 | 5.731 | 0.189 | ||||
Poly (FFMC, 3)3 | −17.411 | 4.619 | 0.000 | ||||
DCf | 0.00126 | 0.0003 | 0.000 | ||||
Pow | −0.00007 | 0.0006 | 0.915 | ||||
EDS | Intercept | −1.78722 | 0.2846 | 0.000 | 0.810 | 0.058 | 0.000 |
Poly (FFMC, 3)1 | 0.02783 | 0.0030 | 0.000 | −20.025 | 4.692 | 0.000 | |
Poly (FFMC, 3)2 | −22.760 | 3.386 | 0.000 | ||||
Poly (FFMC, 3)3 | −18.103 | 3.344 | 0.000 | ||||
DCf | 0.00090 | 0.0002 | 0.000 | ||||
Pow | 0.00200 | 0.0005 | 0.000 | ||||
RMH | Intercept | −1.73976 | 0.2711 | 0.000 | 0.960 | 0.065 | 0.000 |
Poly (FFMC, 3)1 | 0.02067 | 0.0029 | 0.000 | −24.342 | 4.320 | 0.000 | |
Poly (FFMC, 3)2 | −18.558 | 3.854 | 0.000 | ||||
Poly (FFMC, 3)3 | −9.558 | 3.343 | 0.005 | ||||
DCf | 0.00319 | 0.0003 | 0.000 | ||||
Pow | 0.00213 | 0.0007 | 0.003 | ||||
LLB | Intercept | −2.56769 | 0.2258 | 0.000 | −0.035 | 0.074 | 0.637 |
Poly (FFMC, 3)1 | 0.04534 | 0.0024 | 0.000 | 1.002 | 7.685 | 0.896 | |
Poly (FFMC, 3)2 | −34.040 | 5.019 | 0.000 | ||||
Poly (FFMC, 3)3 | −27.362 | 3.949 | 0.000 | ||||
DCf | 0.00040 | 0.0001 | 0.001 | ||||
Pow | −0.00099 | 0.0005 | 0.059 | ||||
KEN | Intercept | −4.17200 | 0.0010 | 0.000 | −0.017 | 0.359 | 0.963 |
Poly (FFMC, 3)1 | 0.04781 | 0.0111 | 0.000 | −2.364 | 24.072 | 0.922 | |
Poly (FFMC, 3)2 | −18.460 | 8.892 | 0.038 | ||||
Poly (FFMC, 3)3 | −26.822 | 11.317 | 0.018 | ||||
DCf | 0.00085 | 0.0003 | 0.009 | ||||
Pow | 0.00000 | 0.0008 | 0.999 | ||||
DRY | Intercept | −6.42641 | 0.0948 | 0.000 | 1.969 | 1.201 | 0.101 |
Poly (FFMC, 2)1 | 0.06904 | 0.0010 | 0.000 | −258.325 | 130.187 | 0.047 | |
Poly (FFMC, 2)2 | 202.358 | 98.550 | 0.040 | ||||
Poly (FFMC, 2)3 | −124.790 | 47.899 | 0.009 | ||||
DCf | 0.00094 | 0.0005 | 0.058 | ||||
Pow | 0.00007 | 0.0009 | 0.937 | ||||
KLK | Intercept | −5.92882 | 0.8925 | 0.000 | −0.132 | 0.6800 | 0.846 |
Poly (FFMC, 2)1 | 0.05213 | 0.0096 | 0.000 | 39.130 | 49.396 | 0.428 | |
Poly (FFMC, 2)2 | −45.571 | 22.724 | 0.045 | ||||
DCf | 0.00180 | 0.0010 | 0.061 | ||||
Pow | 0.00315 | 0.0008 | 0.000 | ||||
SUD | Intercept | −4.74759 | 0.6273 | 0.000 | −0.281 | 0.363 | 0.438 |
Poly (FFMC, 2)1 | 0.05706 | 0.0068 | 0.000 | 21.796 | 31.095 | 0.483 | |
Poly (FFMC, 2)2 | −47.314 | 15.277 | 0.002 | ||||
DCf | −0.00121 | 0.0005 | 0.039 | ||||
Pow | 0.00022 | 0.0004 | 0.629 |
Region | Intercept | s.e. | p | DCf | s.e. | p | Pow | s.e. | p | ISI | s.e. | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GP | −0.515 | 0.431 | 0.232 | −0.0003 | 0.0009 | 0.735 | −0.002 | 0.002 | 0.275 | 0.020 | 0.026 | 0.435 |
EDS | −2.223 | 0.357 | 0.000 | 0.0009 | 0.0009 | 0.312 | 0.003 | 0.001 | 0.001 | 0.047 | 0.014 | 0.001 |
RMH | −2.639 | 0.417 | 0.000 | 0.0059 | 0.0013 | 0.000 | −0.001 | 0.003 | 0.748 | 0.034 | 0.014 | 0.167 |
LLB | −0.279 | 0.027 | 0.338 | −0.00001 | 0.0005 | 0.980 | −0.002 | 0.002 | 0.385 | 0.030 | 0.008 | 0.000 |
KEN | −2.020 | 0.478 | 0.000 | 0.0005 | 0.0010 | 0.637 | −0.003 | 0.002 | 0.193 | 0.095 | 0.022 | 0.000 |
DRY | −2.326 | 0.541 | 0.000 | 0.0019 | 0.0016 | 0.225 | −0.001 | 0.003 | 0.808 | 0.023 | 0.031 | 0.459 |
SUD | 1.385 | 0.451 | 0.002 | −0.0013 | 0.0016 | 0.402 | −0.001 | 0.001 | 0.691 | 0.072 | 0.018 | 0.000 |
KLK | −1.266 | 0.665 | 0.057 | 0.0004 | 0.0022 | 0.853 | −0.001 | 0.002 | 0.781 | 0.083 | 0.028 | 0.003 |
Region | Intercept | s.e. | p | DCf | s.e. | p | Pow | s.e. | p | R2 | s.e. | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GP | 1.757 | 0.538 | 0.002 | 0.0013 | 0.003 | 0.615 | 0.0007 | 0.001 | 0.552 | 0.02 | 0.805 | 0.742 |
EDS | 2.066 | 0.498 | 0.000 | 0.0017 | 0.001 | 0.190 | −0.0013 | 0.001 | 0.325 | 0.07 | 0.759 | 0.273 |
RMH | 1.333 | 0.412 | 0.003 | 0.0049 | 0.001 | 0.001 | −0.0037 | 0.003 | 0.248 | 0.26 | 0.729 | 0.004 |
LLB | 2.404 | 0.847 | 0.007 | 0.0010 | 0.001 | 0.461 | 0.0038 | 0.006 | 0.532 | 0.02 | 1.122 | 0.649 |
KEN | 1.495 | 0.418 | 0.001 | 0.0025 | 0.001 | 0.023 | −0.0010 | 0.002 | 0.635 | 0.15 | 0.734 | 0.054 |
DRY | 0.609 | 0.332 | 0.074 | 0.0023 | 0.001 | 0.017 | 0.0003 | 0.001 | 0.844 | 0.15 | 0.561 | 0.055 |
KLK | 1.500 | 0.5268 | 0.007 | 0.0006 | 0.0021 | 0.777 | −0.0004 | 0.0016 | 0.776 | 0.00 | 0.840 | 0.929 |
SUD | 2.473 | 0.4179 | 0.000 | -0.0004 | 0.0014 | 0.761 | -0.0021 | 0.0012 | 0.084 | 0.08 | 0.583 | 0.193 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanes, C.; Wotton, M.; Woolford, D.G.; Martell, D.L.; Flannigan, M. Preceding Fall Drought Conditions and Overwinter Precipitation Effects on Spring Wildland Fire Activity in Canada. Fire 2020, 3, 24. https://doi.org/10.3390/fire3020024
Hanes C, Wotton M, Woolford DG, Martell DL, Flannigan M. Preceding Fall Drought Conditions and Overwinter Precipitation Effects on Spring Wildland Fire Activity in Canada. Fire. 2020; 3(2):24. https://doi.org/10.3390/fire3020024
Chicago/Turabian StyleHanes, Chelene, Mike Wotton, Douglas G. Woolford, David L. Martell, and Mike Flannigan. 2020. "Preceding Fall Drought Conditions and Overwinter Precipitation Effects on Spring Wildland Fire Activity in Canada" Fire 3, no. 2: 24. https://doi.org/10.3390/fire3020024
APA StyleHanes, C., Wotton, M., Woolford, D. G., Martell, D. L., & Flannigan, M. (2020). Preceding Fall Drought Conditions and Overwinter Precipitation Effects on Spring Wildland Fire Activity in Canada. Fire, 3(2), 24. https://doi.org/10.3390/fire3020024