Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Longleaf Pine Bark Measurements
2.2. Pitch Pine Bark Measurements
2.3. Collection and Processing Procedures
2.4. Data Analysis
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babrauskas, V. Firebrands and Embers. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer Science and Business Media LLC: Cham, Switzerland, 2018; pp. 1–14. [Google Scholar]
- Blackwell, J.A.; Tuttle, A. California Fire Siege 2003: The Story; California Dept. of Forestry and Fire Protection: Sacramento, CA, USA, 2003. [Google Scholar]
- Manzello, S.L.; Foote, E.I.D. Characterizing Firebrand Exposure from Wildland–Urban Interface (WUI) Fires: Results from the 2007 Angora Fire. Fire Technol. 2012, 50, 105–124. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.; Sims, N.C.; Bannister, A.; Hollis, J.; Hurley, R. Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.C. Wildland fire spot ignition by sparks and firebrands. Fire Saf. J. 2017, 91, 2–10. [Google Scholar] [CrossRef]
- Manzello, S.L.; Blanchi, R.; Gollner, M.J.; Gorham, D.; McAllister, S.; Pastor, E.; Planas, E.; Reszka, P.; Suzuki, S. Summary of workshop large outdoor fires and the built environment. Fire Saf. J. 2018, 100, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Filkov, A.I.; Prohanov, S.; Mueller, E.; Kasymov, D.P.; Martynov, P.; El Houssami, M.; Thomas, J.; Skowronski, N.S.; Butler, B.; Gallagher, M.; et al. Investigation of firebrand production during prescribed fires conducted in a pine forest. Proc. Combust. Inst. 2017, 36, 3263–3270. [Google Scholar] [CrossRef]
- Thomas, J.C.; Mueller, E.V.; Santamaria, S.; Gallagher, M.; El Houssami, M.; Filkov, A.I.; Clark, K.; Skowronski, N.S.; Hadden, R.M.; Mell, W.; et al. Investigation of firebrand generation from an experimental fire: Development of a reliable data collection methodology. Fire Saf. J. 2017, 91, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Ellis, P.F.M. The Aerodynamic and Combustion Characteristics of Eucalypt Bark: A Firebrand Study. Ph.D. Thesis, Australian National University, Canberra, Australia, 2000. [Google Scholar]
- Ellis, P.F.M. Firebrand characteristics of the stringy bark of messmate (Eucalyptus obliqua) investigated using non-tethered samples. Int. J. Wildland Fire 2013, 22, 642–651. [Google Scholar] [CrossRef]
- Hall, J.; Ellis, P.F.; Cary, G.J.; Bishop, G.; Sullivan, A.L. Long-distance spotting potential of bark strips of a ribbon gum (Eucalyptus viminalis). Int. J. Wildland Fire 2015, 24, 1109. [Google Scholar] [CrossRef]
- El Houssami, M.; Mueller, E.V.; Filkov, A.I.; Thomas, J.C.; Skowronski, N.S.; Gallagher, M.R.; Clark, K.L.; Kremens, R.; Simeoni, A. Experimental Procedures Characterising Firebrand Generation in Wildland Fires. Fire Technol. 2015, 52, 731–751. [Google Scholar] [CrossRef]
- Ellis, P.F.M. Fuelbed ignition potential and bark morphology explain the notoriety of the eucalypt messmate ‘stringybark’ for intense spotting. Int. J. Wildland Fire 2011, 20, 897–907. [Google Scholar] [CrossRef]
- Pinchot, G. A Study of Forest Fires and Wood Production in Southern New Jersey; MacCrellish & Quigley: Trenton, NJ, USA, 1899. [Google Scholar]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Commonwealth of Australia Forestry and Timber Bureau, Leaflet, Number 107: Canberra, Australia, 1967. [Google Scholar]
- Cheney, N.P.; Bary, G.A.V. The propagation of mass conflagrations in a standing eucalypt forest by the spotting process. In Proceedings of the Mass Fire Symposium: Collected Papers, Canberra, Australia, 10–12 February 1969; Defense Standard Laboratories: Melbourne, Australia, 1969; p. A6. [Google Scholar]
- Reifsnyder, W.E.; Herrington, L.P.; Spalt, K.W. Thermophysical Properties of Bark of Shortleaf, Longleaf, and Red Pine; School of Forestry, Yale University: New Haven, CT, USA, 1967. [Google Scholar]
- Musselman, K.N.; Pomeroy, J.W. Estimation of Needleleaf Canopy and Trunk Temperatures and Longwave Contribution to Melting Snow. J. Hydrometeorol. 2017, 18, 555–572. [Google Scholar] [CrossRef]
- Powell, J. A study of habitat temperatures of the bark beetle Dendroctonus ponderosae hopkins in lodgepole pine. Agric. Meteorol. 1967, 4, 189–201. [Google Scholar] [CrossRef]
- Stickel, P.W. On the Relation between Bark Character and Resistance to Fire; Tech. Note; U.S. Department of Agriculture, Northeastern Forest Experiment Station: New Haven, CT, USA, 1941; 2p. [Google Scholar]
- Tewari, L.; Tewari, G.; Nailwal, T.; Pangtey, Y.P.S. Bark factors affecting the distribution of epiphytic ferns communities. Nat. Sci. 2009, 7, 76–81. [Google Scholar]
- Kobziar, L.N.; Godwin, D.; Taylor, L.; Watts, A. Perspectives on Trends, Effectiveness, and Impediments to Prescribed Burning in the Southern U.S. Forests 2015, 6, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T.; Boerner, R.E. Fire Frequency and the Pine Barrens of New Jersey. Bull. Torrey Bot. Club 1981, 108, 34–50. [Google Scholar] [CrossRef]
- Gallagher, M. Monitoring Fire Effects in the New Jersey Pine Barrens Using Burn Severity Indices. Ph.D. Thesis, Rutgers University, New Brunswick, NJ, USA, 2017. [Google Scholar]
- Knezick, J.E.K.R. Twenty-Year Observations on a Clonal Plantation of Pitch Pine in the New Jersey Pinelands. Bull. Torrey Bot. Club 1985, 112, 318. [Google Scholar] [CrossRef]
- Kocherlakota, K.; Kocherlakota, S.; Krzanowski, W.J. Principles of Multivariate Analysis, A User’s Perspective. Biometrics 1989, 45, 1338. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.G.; Kaiser, M.K. MANOVA method for analyzing repeated measures designs: An extensive primer. Psychol. Bull. 1985, 97, 316. [Google Scholar] [CrossRef]
- Spalt, K.F.; Reifsnyder, W.E. Bark Characteristics and Fire Resistance: A Literature Survey; USDA Forest Service Southern Forest Experiment Station: New Orleans, LA, USA, 1962; 19p. [Google Scholar]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Hiers, J.K.; Varner, J.M.; Hoffman, C.M.; Dickinson, M.B.; Michaletz, S.T.; Loudermilk, E.L.; Butler, B.W. Advances in Mechanistic Approaches to Quantifying Biophysical Fire Effects. Curr. For. Rep. 2018, 4, 161–177. [Google Scholar] [CrossRef]
- White, M.S.; Ifju, G.; Johnson, J.A. The role of extractives in the hydrophobic behavior of loblolly pine rhytidome. Wood Fiber Sci. 1947, 5, 353–363. [Google Scholar]
- Butler, B.W.; Webb, B.W.; Jimenez, D.; A Reardon, J.; Jones, J.L. Thermally induced bark swelling in four North American tree species. Can. J. For. Res. 2005, 35, 452–460. [Google Scholar] [CrossRef]
- Kreye, J.K.; Hiers, J.K.; Varner, J.M.; Hornsby, B.; Drukker, S.; O’Brien, J.J. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 2018, 48, 1331–1342. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokswinski, S.; Gallagher, M.R.; Skowronski, N.S.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K. Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation. Fire 2020, 3, 55. https://doi.org/10.3390/fire3040055
Pokswinski S, Gallagher MR, Skowronski NS, Loudermilk EL, O’Brien JJ, Hiers JK. Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation. Fire. 2020; 3(4):55. https://doi.org/10.3390/fire3040055
Chicago/Turabian StylePokswinski, Scott, Michael R. Gallagher, Nicholas S. Skowronski, E. Louise Loudermilk, Joseph J. O’Brien, and J. Kevin Hiers. 2020. "Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation" Fire 3, no. 4: 55. https://doi.org/10.3390/fire3040055
APA StylePokswinski, S., Gallagher, M. R., Skowronski, N. S., Loudermilk, E. L., O’Brien, J. J., & Hiers, J. K. (2020). Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation. Fire, 3(4), 55. https://doi.org/10.3390/fire3040055