Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Datasets
2.3. Analysis Methods
Observed Event? | |||
Yes | No | ||
Forecast Issued? | Yes | Correct Positive (a) | False Alarm (b) |
No | Miss (c) | Correct Negative (d) * | |
* Not calculated. |
3. Results
3.1. Performance as Forecasts of LF Occurrence
3.2. Fire Size
3.3. Fire Cause
3.4. Land Cover Type
3.5. Fire Danger
4. Discussion
4.1. Performance in the Context of Rare Event Forecasting
4.2. Lightning- and Human-Caused Fires
4.3. Fuel Dryness as a Prerequisite for RFW Issuance
4.4. Limitations of Assessing and Interpreting Skill of RFWs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Acronyms
BOI | Boise (weather forecast office) |
CSI | Critical success index |
ERC | Energy release component |
FACET | Forecasting a Continuum of Environment Threats |
FAR | False alarm ratio |
FPA | Fire Program Analysis |
FWZs | Fire weather zones |
gridMET | Gridded meteorological data |
IEM | Iowa Environmental Mesonet |
LF | Large fire |
LFD | Large fire day |
MFR | Medford (weather forecast office) |
MODIS | Moderate resolution imaging spectroradiometer |
MSO | Missoula (weather forecast office) |
NOAA | National Oceanic and Atmospheric Administration |
NWS | National Weather Service |
OTX | Spokane (weather forecast office) |
PDT | Pendleton (weather forecast office) |
PIH | Pocatello (weather forecast office) |
POD | probability of detection |
PQR | Portland (weather forecast office) |
RAWS | Remote Automatic Weather Stations |
RFWs | Red Flag Warnings |
SEW | Seattle (weather forecast office) |
U.S. | United States |
WFOs | weather forecast offices |
References
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, N.M.; Kolden, C.A.; Smith, A.M.S. Assessing landscape vulnerability to wildfire in the USA. Curr. For. Rep. 2016, 2, 201–213. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Kolden, C.A.; Bowman, D.M. Biomimicry can help humans to sustainably coexist with fire. Nat. Ecol. Evol. 2018, 2, 1827–1829. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.S.; Kolden, C.A.; Paveglio, T.; Cochrane, M.A.; Mortitz, M.A.; Bowman, D.M.; Hoffman, C.M.; Lutz, J.; Queen, L.P.; Hudak, A.T.; et al. The science of firescapes: Achieving fire resilient communities. BioScience 2016, 66, 130–146. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human expansion of the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Parks, S.A.; Miller, C.; Parisien, M.A.; Holsinger, L.M.; Dobrowski, S.Z.; Abatzoglou, J.T. Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere 2015, 6, 275. [Google Scholar] [CrossRef]
- Brewer, M.J.; Clements, C.B. The 2018 Camp Fire: Meteorological analysis using in situ observations and numerical simulations. Atmosphere 2020, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Nauslar, N.J.; Abatzoglou, J.T.; Marsh, P.T. The 2017 North Bay and Southern California Fires: A case study. Fire 2018, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Balch, J.K.; Schoennagel, T.; Williams, A.P.; Abatzoglou, J.T.; Cattau, M.E.; Mietkiewicz, N.P.; St. Denis, L.A. Switching on the Big Burn of 2017. Fire 2018, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, W.J.; Wotton, B.M.; Flannigan, M.D. Wildland fire danger rating and early warning systems. In Wildfire Risks, Hazards, and Disasters; Paton, D., Buergelt, P.T., McCaffrey, S., Tedim, F., Eds.; Elsevier, Inc.: Amsterdam, The Netherlands, 2014; p. 268. ISBN 978-012-410-434-1. [Google Scholar]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The 1978 National Fire-Danger Rating System: Technical Documentation; General Technical Report INT-169 1983; U.S. Department of Agriculture Forest Service Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1983; p. 44.
- Wagner, C.E. Development and Structure of the Canadian Forest Fire Index System; Ottawa Forestry Tech. Rep. 35; Canadian Forestry Service, Headquarters: Ottawa, ON, Canada, 1987; p. 35.
- Boer, M.M.; Nolan, R.H.; De Dios, V.R.; Clarke, H.; Price, O.F.; Bradstock, R.A. Changing weather extremes call for early warning of potential for catastrophic fire. Rev. Geophys. 2017, 1196–1202. [Google Scholar]
- Sharples, J.J.; McRae, R.H.D.; Weber, R.O.; Gill, A.M. A simple index for assessing fire danger rating. Environ. Model. Softw. 2009, 24, 764–774. [Google Scholar] [CrossRef]
- Anderson, S.A.J. Future Options for Fire Behaviour Modelling and Fire Danger Rating in New Zealand. Proc. R. Soc. Qld. 2009, 115, 119–128. [Google Scholar]
- Gazzard, R.; McMorrow, J.; Aylen, J. Wildfire policy and management in England: An evolving response from Fire and Rescue Services, forestry, and cross-sector groups. Phil. Trans. R. Soc. B 2016, 371, 20150341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolly, W.M.; Freeborn, P.H.; Page, W.G.; Butler, B.W. Severe Fire Danger Index: A forecastable metric to inform firefighter and community wildfire risk management. Fire 2019, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Rolinski, T.; Capps, S.B.; Fovell, R.G.; Cao, Y.; D’Agostino, B.J.; Vanderburg, S. The Santa Ana Wildfire Threat Index: Methodology and operational implementation. Weather Forecast. 2016, 31, 1881–1897. [Google Scholar] [CrossRef]
- Srock, A.F.; Charney, J.J.; Potter, B.E.; Goodrick, S.L. The Hot-Dry-Windy Index: A new fire weather index. Atmosphere 2019, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.J.; Charney, J.J.; Colle, B.A. Development of a fire weather index using meteorological observations within the Northeast United States. J. Appl. Meteor. Climatol. 2016, 55, 389–402. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Smith, C.M.; Swain, D.L.; Ptak, T.; Kolden, C.A. Population exposure to pre-emptive de-energization aimed at averting wildfires in Northern California. Environ. Res. Lett. 2020, 15, 094046. [Google Scholar] [CrossRef]
- NWS. National Weather Service Instruction 10-401. Fire Weather Services Product Specification; National Weather Service: Silver Spring, MD, USA, 2017; p. 24. Available online: https://www.nws.noaa.gov/directives/sym/pd01004001curr.pdf (accessed on 27 March 2020).
- Brooks, H.E.; Correia, J. Long-term performance metrics for National Weather Service tornado warnings. Weather Forecast. 2018, 33, 1501–1511. [Google Scholar] [CrossRef]
- Obermeier, H.M.; Anderson, M.R. Verification and analysis of impact-based tornado warnings in the Central Region of the National Weather Service. Electron. J. Sev. Storms Meteor. 2014, 10, 1–20. [Google Scholar]
- Clark, R.A.; Gourley, J.J.; Flamig, Z.L.; Hong, Y.; Clark, E. CONUS-wide evaluation of National Weather Service flash flood guidance products. Weather Forecast. 2014, 29, 377–392. [Google Scholar] [CrossRef] [Green Version]
- McGovern, A.; Gagne, D.J., 2nd; Williams, J.K.; Brown, R.A.; Basara, J.B. Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Mach. Learn. 2014, 95, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Lindley, T.T.; Vitale, J.D.; Burgett, W.S.; Beierle, M.-J. Proximity meteorological observations for wind-driven grassland wildfire starts on the southern High Plains. Electron. J. Sev. Storms Meteor. 2011, 6, 1–27. [Google Scholar]
- Werth, P.A.; Potter, B.E.; Alexander, M.E.; Clements, C.B.; Cruz, M.G.; Finney, M.A.; Forthofer, J.M.; Goodrick, S.L.; Hoffman, C.; Jolly, W.M.; et al. Synthesis of Knowledge of Extreme Fire Behavior: Volume 2 for Fire Behavior Specialists, Researchers, and Meteorologists; U.S Department of Agriculture Forest Service Pacific Northwest Research Station General Tech. Rep. PNW-GTR-891; U.S. Department of Agriculture: Portland, OR, USA, 2016; p. 258.
- Short, K.C. Spatial Wildfire Occurrence Data for the United States, 1992–2015 [FPA_FOD_20170508], 4th ed.; Forest Service Research Data Archive; U.S. Department of Agriculture Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2017. Available online: https://www.fs.usda.gov/rds/archive/catalog/RDS-2013-0009.4 (accessed on 7 August 2019).
- Agee, J.K. Fire Ecology of Pacific Northwest Forests, 2nd ed.; Island Press: Washington, DC, USA, 1996; p. 505. ISBN 978-155-963-230-0. [Google Scholar]
- Abatzoglou, J.T.; Kolden, C.A.; Balch, J.K.; Bradley, B.A. Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett. 2016, 11, 4. [Google Scholar] [CrossRef]
- IEM. Iowa Environmental Mesonet. Archived NWS Watch/Warnings. Available online: https://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml (accessed on 30 May 2019).
- NWS. National Weather Service Instruction 10-407, Fire Weather Services Zone Change Process; NWS: Silver Spring, MD, USA, 2018; p. 6. Available online: https://www.nws.noaa.gov/directives/sym/pd01004007curr.pdf (accessed on 27 March 2020).
- Nagy, R.C.; Fusco, E.; Bradley, B.A.; Abatzoglou, J.T.; Balch, J.K. Human-related ignitions increase the number of large wildfires across U.S. ecoregions. Fire 2018, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Broxton, P.D.; Zeng, X.; Sulla-Menashe, D.; Troch, P.A. A global land cover climatology using MODIS data. J. Appl. Meteor. Climatol. 2014, 53, 1593–1605. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Freeborn, P.H.; Cochrane, M.A.; Jolly, W.M. Relationships between fire danger and the daily number and daily growth of active incidents burning in the northern Rocky Mountains, USA. Int. J. Wildl. Fire 2015, 24, 900–910. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildl. Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.T.; Steel, E.A. Modeling very large-fire occurrences over the continental United States from weather and climate forcing. Environ. Res. Lett. 2014, 9, 12. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Andrews, P.L.; Kurth, L.L. Implications of using percentiles to define fire danger levels. Extended Abstract P1.5. In Proceedings of the Eighth Symposium on Fire and Forest Meteorology, Kalispell, MT, USA, 12–15 October 2009. [Google Scholar]
- Dalton, M.M.; Abatzoglou, J.T.; Evers, L.; Hegewisch, K. Projected Changes in the Energy Release Component Under Climate Change in Northwest Predictive Services Areas; A report to the Bureau of Land Management Oregon-Washington State Office; The Oregon Climate Change Research Institute (OCCRI): Corvallis, OR, USA, 2015; p. 88. [Google Scholar]
- Murphy, A.H.; Winkler, R.L. A general framework for forecast verification. Mon. Weather. Rev. 1987, 115, 1330–1338. [Google Scholar] [CrossRef] [Green Version]
- Doswell, C.A.; Davies-Jones, R.; Keller, D.L. On summary measures of skill in rare event forecasting based on contingency tables. Weather Forecast. 1990, 5, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 676. ISBN 978-012-385-022-5. [Google Scholar]
- Abatzoglou, J.T.; Balch, J.K.; Bradley, B.A.; Kolden, C.A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildl. Fire 2018, 27, 377–386. [Google Scholar] [CrossRef]
- Vaughan, M.T.; Tang, B.H.; Bosart, L.F. Climatology and analysis of high-impact, low predictive skill severe weather events in the northeast United States. Weather Forecast. 2017, 32, 1903–1919. [Google Scholar] [CrossRef]
- Mason, I.B. Binary events. In Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 1st ed.; Jolliffe, I.T., Stephenson, D.B., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2003; pp. 37–76. ISBN 978-047-086-441-8. [Google Scholar]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.H. Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Potts, J.M. Basic concepts. In Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 1st ed.; Jolliffe, I.T., Stephenson, D.B., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2003; pp. 13–36. ISBN 978-047-086-441-8. [Google Scholar]
- Mason, S.J. On using “climatology” as a reference strategy in the Brier and ranked probability skill scores. Mon. Weather Rev. 2004, 132, 1891–1895. [Google Scholar] [CrossRef] [Green Version]
- Warner, T.T. Numerical Weather and Climate Prediction, 1st ed.; Cambridge University Press: New York, NY, USA, 2011; p. 550. ISBN 978-051-176-324-3. [Google Scholar]
- Mittermaier, M.P. The potential impact of using persistence as a reference forecast on perceived forecast skill. Weather Forecast. 2008, 23, 1022–1031. [Google Scholar] [CrossRef]
- Murphy, A.H.; Winkler, R.L. Forecasters and probability forecasts: Some current problems. Bull. Am. Meteorol. Soc. 1971, 52, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.H. Probabilities, odds, and forecasts of rare events. Weather Forecast. 1991, 6, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Holliday, J.R.; Nanjo, K.Z.; Tiampo, K.F.; Rundle, J.B.; Turcotte, D.L. Earthquake forecasting and its verification. Nonlinear Process. Geophys. 2005, 12, 965–977. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, R.; Turcotte, D.L.; Rundle, J.B.; Tiampo, K.F.; Holliday, J.R. Forecasting the locations of future large earthquakes: An analysis and verification. Pure Appl. Geophys. 2010, 167, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Nauslar, N.J. Examining the lightning polarity of lightning caused wildfires. In Proceedings of the 23rd International Lightning Detection Conference, 5th International Lightning Detection Conference, Tucson, AZ, USA, 18–21 March 2014; p. 15. [Google Scholar]
- Rorig, M.L.; Ferguson, S.A. Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J. Appl. Meteorol. 1999, 38, 1565–1575. [Google Scholar] [CrossRef]
- Schultz, C.J.; Nauslar, N.J.; Wachter, J.B.; Hain, C.R.; Bell, J.R. Spatial, temporal and electrical characteristics of lightning in reported lightning-initiated wildfire events. Fire 2019, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, S.; Taylor, S.W. Prediction of daily lightning-and human-caused fires in British Columbia. Int. J. Wildl. Fire 2012, 21, 342–356. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Human-caused fire occurrence modelling in perspective: A review. Int. J. Wildl. Fire 2017, 26, 983–998. [Google Scholar] [CrossRef]
- Mees, R. Is arson associated with severe fire weather in Southern California? Int. J. Wildl. Fire 1991, 1, 97–100. [Google Scholar] [CrossRef]
- Brewer, M.C.; Mass, C.F.; Potter, B.E. The West Coast thermal trough: Climatology and synoptic evolution. Mon. Weather Rev. 2012, 140, 3820–3843. [Google Scholar] [CrossRef]
- St. Denis, L.A.; Mietkiewicz, N.P.; Short, K.C.; Buckland, M.; Balch, J.K. All-hazards dataset mined from the US National Incident Management System 1999–2014. Sci. Data 2020, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Podur, J.; Wotton, B.M. Defining fire spread event days for fire-growth modelling. Int. J. Wildl. Fire 2011, 20, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Appl. 2014, 1, 125–151. [Google Scholar] [CrossRef]
- Casati, B.; Wilson, L.J.; Stephenson, D.B.; Nurmi, P.; Ghelli, A.; Pocernich, M.; Damrath, U.; Ebert, E.E.; Brown, B.G.; Mason, S. Forecast verification: Current status and future directions. Met. Apps. 2008, 15, 3–18. [Google Scholar] [CrossRef]
- Worsnop, R.P.; Scheuerer, M.; Hamill, T.M. Extended-range probabilistic fire-weather forecasting based on ensemble model output statistics and ensemble copula coupling. Mon. Weather Rev. 2020, 148, 499–521. [Google Scholar] [CrossRef]
- Noonan-Wright, E.K.; Opperman, T.S.; Finney, M.A.; Zimmerman, G.T.; Seli, R.C.; Elenz, L.M.; Calkin, D.E.; Fiedler, J.R. Developing the US Wildland Fire Decision Support System. J. Combust. 2011, 168473. [Google Scholar] [CrossRef]
- Rothfusz, L.P.; Schneider, R.; Novak, D.; Klockow-McClain, K.; Gerard, A.E.; Karstens, C.; Stumpf, G.J.; Smith, T.M. FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Am. Meteorol. Soc. 2018, 99, 2025–2043. [Google Scholar] [CrossRef]
WFO Pendleton All FWZs | “LIGHTNING: Abundant lightning in conjunction with sufficiently dry fuels (fuels remain dry or critical during and after a lightning event). Warnings are not typically issued for isolated coverage events. Warnings not typically issued for events that will be accompanied by significant rain (greater than 0.25 inches). However, if a lightning event will occur with significant rain, but is then followed by very hot and dry conditions, a warning may be issued if holdover/sleeper fires are a concern.” |
WFO Portland FWZs 605, 607, and 660 | “One station (RAWS) must report 35% humidity or less AND 10-minute wind speed of 10 mph AND/OR gusts to 20 mph or more for four hours in an 8- hour block, AND at least TWO other stations reporting 35% humidity or less AND 10- minute wind of 10 mph AND/OR gusts to 20 mph for at least TWO hours. Key RAWS: Horse Creek, Log Creek, Wanderer’s Peak, Kosmos, Canyon Creek, Orr Creek, Elk Rock, and 3-Corner Rock. NOTE: Includes stations from zone 659.” (Only valid during nighttime hours) |
WFO Spokane All FWZs | “An unusually unstable atmosphere. This would be associated with a strong thermal trough which typically forms along the east slopes of the Washington Cascades.” |
Performance Metric | Measures | Equation | Possible Range and Perfect Score |
---|---|---|---|
Probability of detection (POD) | Fraction of observed events that were correctly forecast | POD = | 0–1 1 |
False alarm ratio (FAR) | Fraction of predicted events that did not actually occur | FAR = | 0–1 0 |
Critical success index (CSI) | Fraction of correctly forecasted events without consideration to correct negatives | CSI = | 0–1 1 |
LF Size ≥ 80th Perc. | LF Size ≥ 90th Perc. | LF Size ≥ 95th Perc. | |
---|---|---|---|
POD | 0.24 | 0.29 | 0.34 |
PODSS | 0.13 | 0.18 | 0.23 |
Relative Improvement | 99.4% | 124.1% | 138.2% |
Forested LFD | Non-Forested LFD | |
---|---|---|
POD | 0.28 | 0.34 |
PODSS | 0.18 | 0.23 |
Relative Improvement | 129.0% | 131.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, J.; Abatzoglou, J.T.; Nauslar, N.J.; Smith, A.M.S. Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence. Fire 2020, 3, 60. https://doi.org/10.3390/fire3040060
Clark J, Abatzoglou JT, Nauslar NJ, Smith AMS. Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence. Fire. 2020; 3(4):60. https://doi.org/10.3390/fire3040060
Chicago/Turabian StyleClark, Joshua, John T. Abatzoglou, Nicholas J. Nauslar, and Alistair M.S. Smith. 2020. "Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence" Fire 3, no. 4: 60. https://doi.org/10.3390/fire3040060
APA StyleClark, J., Abatzoglou, J. T., Nauslar, N. J., & Smith, A. M. S. (2020). Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence. Fire, 3(4), 60. https://doi.org/10.3390/fire3040060