Fire from the Sky in the Anthropocene
Abstract
:1. Introduction
2. Lightning-Caused Fires in the Iberian Peninsula
3. Conclusions: Current and Future Global Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Guerreiro, J.; Fonseca, C.; Salgueiro, A.; Fernandes, P.; Lopez, E.; de Neufville, R.; Mateus, F.; Castellnou, M.; Silva, J.S.; Moura, J.; et al. Análise e Apuramento dos Factos Relativos aos Incêndios que Ocorreram em Pedrógão Grande, Castanheira de Pêra, Ansião, Alvaiázere, Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, Oleiros e Sertã entre 17 e 24 de Junho de 2017; Assembleia da Républica: Lisboa, Portugal, 2017. [Google Scholar]
- Dowdy, A.J.; Fromm, M.D.; McCarthy, N. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J. Geophys. Res. Atmos. 2017, 122, 7342–7354. [Google Scholar] [CrossRef]
- Boer, M.; Dios, V.R.; Bradstock, R. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Dowdy, A. Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn. 2020, 54, 3041–3052. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Styger, J.K.; Marsden-Smedley, J.B. Impact of changes in lightning fire incidence on the values of the Tasmanian wilderness world heritage area. Pap. Proc. R. Soc. Tasman. 2020, 152, 27–32. [Google Scholar] [CrossRef]
- CAL FIRE California Daily Update. Available online: https://www.fire.ca.gov/daily-wildfire-report/ (accessed on 15 September 2020).
- Egloff, B. Lightning strikes: Rethinking the nexus between Australian Indigenous land management and natural forces. Aust. For. 2020, 80, 275–285. [Google Scholar] [CrossRef]
- ICNF, Estatísticas de Incêndios Florestais. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc/estat-sgif#list (accessed on 14 December 2020).
- Martínez, J.; Martínez -Vega, J.; Martín, M.P. El factor humano en los incendios forestales: Análisis de factores socioeconómicos relacionados con la incidencia de incendios forestales en España. In Nuevas Tecnologías para la Estimación del Riesgo de Incendios Forestales; Chuvieco, E., Martín, P., Eds.; CSIC: Madrid, Spain, 2004; pp. 101–142. [Google Scholar]
- Rodríguez-Pérez, J.R.; Ordóñez, C.; Roca-Pardiñas, J.; Vecín-Arias, D.; Castedo-Dorado, F. Evaluating lightning-caused fire occurrence using spatial generalized additive models: A case study in central Spain. Risk Anal. 2020, 40, 1418–1437. [Google Scholar] [CrossRef]
- Pineda, N.; Rigo, T. The rainfall factor in lightning-ignited wildfires in Catalonia. Agric. For. Meteorol. 2017, 239, 249–263. [Google Scholar] [CrossRef]
- ICONA, Los incendios forestales en España durante 1979. Available online: https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios_forestales_espania_1979_tcm30-132553.pdf (accessed on 10 December 2020).
- MAPA, Los Incendios Forestales en España Durante 1994. Available online: https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios_forestales_espania_1994_tcm30-132542.pdf (accessed on 11 December 2020).
- MAGRAMA. Los Incendios Forestales en España. Decenio 2000–2010; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2012.
- Vázquez, A.; Moreno, J.M. Patterns of lightning- and people-caused fires in Peninsular Spain. Int. J. Wildland Fire 1998, 8, 103–115. [Google Scholar] [CrossRef]
- Vecín-Arias, D.; Castedo-Dorado, F.; Ordóñez, C.; Rodríguez-Pérez, J.R. Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula. Agric. For. Meteorol. 2016, 225, 36–47. [Google Scholar] [CrossRef]
- Rivas-Soriano, L.; de Pablo, F.; Tomas, C. Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. J. Atmos. Sol. Terr. Phys. 2005, 67, 1632–1639. [Google Scholar] [CrossRef]
- Santos, J.A.; Reis, M.A.; Pablo, F.D.; Rivas-Soriano, L.; Leite, S.M. Forcing factors of cloud-to-ground lightning over Iberia: Regional-scale assessments. Nat. Hazards Earth Syst. Sci. 2013, 13, 17451758. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, C.E.; Aguado, I.; Nieto, H. Análisis de ocurrencia de incendios forestales causados por rayo en la España peninsular. Geofocus 2009, 9, 232–249. [Google Scholar]
- Nieto, H.; Aguado, I.; García, M.; Chuvieco, E. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agric. For. Meteorol. 2012, 162–163, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Nieto, H.; Aguado, I.; Chuvieco, E. Estimation of lightning-caused fires occurrence probability in central Spain. In Proceedings of the 5th International Conference on Forest Fire Research, Figueira da Foz, Portugal, 27–30 November 2006. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Coughlan, M.R.; Magi, B.I.; Derr, K.M. A global analysis of hunter-gatherers, broadcast fire use, and lightning-fire-prone landscapes. Fire 2018, 1, 41. [Google Scholar] [CrossRef] [Green Version]
- Bates, B.C.; McCaw, L.; Dowdy, A.J. Exploratory analysis of lightning-ignited wildfires in the Warren Region, Western Australia. J. Environ. Manag. 2018, 225, 336–345. [Google Scholar] [CrossRef]
- Styger, J.; Marsden-Smedley, J.; Kirkpatrick, J. Changes in lightning fire incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire 2018, 1, 38. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Dai, A.; Zhang, Y.; Rasmussen, K.L. Changes in convective available potential energy and convective inhibition under global warming. J. Clim. 2020, 33, 2025–2050. [Google Scholar] [CrossRef]
- Qie, K.; Tian, W.; Wang, W.; Wu, X.; Yuan, T.; Tian, H.; Luo, J.; Zhang, R.; Wang, T. Regional trends of lightning activity in the tropics and subtropics. Atmos. Res. 2020, 242, 104960. [Google Scholar] [CrossRef]
- Romps, D.M.; Seeley, J.T.; Vollaro, D.; Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 2014, 346, 851–854. [Google Scholar] [CrossRef]
- Fill, J.M.; Davis, C.N.; Crandall, R.M. Climate change lengthens southeastern USA lightning-ignited fire seasons. Glob. Chang. Biol. 2019, 25, 3562–3569. [Google Scholar] [CrossRef] [PubMed]
- Tippett, M.K.; Allen, J.T.; Gensini, V.A.; Brooks, H.E. Climate and hazardous convective weather. Curr. Clim. Chang. Rep. 2015, 1, 60–73. [Google Scholar] [CrossRef] [Green Version]
- Partain, J.; Alden, S.; Bhatt, U.; Bieniek, P.; Brettschneider, B.; Lader, R.; Olsson, P.; Rupp, T.; Strader, H.; Thoman, R.; et al. An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015. Bull. Am. Meteorol. Soc. 2016, 97, S14–S18. [Google Scholar] [CrossRef]
- Macias Fauria, M.; Michaletz, S.; Johnson, E. Predicting climate change effects on wildfires requires linking processes across scales. WIREs Clim. Chang. 2011, 2, 99–112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, P.M.; Santos, J.A.; Castedo-Dorado, F.; Almeida, R. Fire from the Sky in the Anthropocene. Fire 2021, 4, 13. https://doi.org/10.3390/fire4010013
Fernandes PM, Santos JA, Castedo-Dorado F, Almeida R. Fire from the Sky in the Anthropocene. Fire. 2021; 4(1):13. https://doi.org/10.3390/fire4010013
Chicago/Turabian StyleFernandes, Paulo M., João A. Santos, Fernando Castedo-Dorado, and Rui Almeida. 2021. "Fire from the Sky in the Anthropocene" Fire 4, no. 1: 13. https://doi.org/10.3390/fire4010013
APA StyleFernandes, P. M., Santos, J. A., Castedo-Dorado, F., & Almeida, R. (2021). Fire from the Sky in the Anthropocene. Fire, 4(1), 13. https://doi.org/10.3390/fire4010013